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Abstract

A distributed sensing network consists of more than one (spatially) separated sensors, each
with possibly different characteristics and not all of them sensing the same environment. Due
to their vast applicability, there has been a flurry of recent activity in the area of network
design with respect to distributed sensing. Issues involved in the design of efficient networks
include sensor mobility, reliability of links and capacity.

This work builds on the Dynamic Expected Coverage Model proposed earlier and in-
corporates the issue of bandwidth capacity in the model. A MILP formulation is proposed
that includes first order preferential assignment with coverage and relocation of sensors. The
solution methodology uses modifications of the greedy heuristics and the column generation
scheme. It is found that the capacity constraint does change the structure of the problem
requiring additional computational effort.

Additionally, some non-steady state generalizations of the Dynamic MEXCLP model
are theoretically explored. It is shown that under some assumptions, the problem of opti-
mally locating cluster heads under non-steady state conditions for maximum coverage can

be reduced to the steady-state formulations.
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Chapter 1

Introduction and Literature Review

1.1 Introduction to Network Design for Distributed
Sensing and Fusion

A distributed sensing network consists of more than one (spatially) separated sensors, each
with possibly different characteristics and not all of them sensing the same environment.

Some examples of distributed sensing as illustrated in Fig. 1.1 [45] might be

1. Military sensor networks to detect enemy movements, for tracking of enemy targets
(such as planes, missiles etc.) and for the detection of the presence of hazardous

material (such as poison gases or radiation, explosions, etc.)

2. Environmental sensor networks (such as in plains or deserts or on mountains or ocean

surfaces) to detect and monitor environmental changes.

3. Wireless traffic sensor networks to monitor vehicle traffic on a highway or in a congested

part of a city.

4. Wireless surveillance sensor networks for providing security in a shopping mall, parking

garage, or other facility.

5. Wireless parking lot sensor networks to determine which spots are occupied and which

spots are free.



Figure 1.1: Some applications of Distributed Sensing and Fusion [45].

6. Other applications might include implementation of robotics, automated control of
industrial systems (including monitoring of complex mechanical equipment such as
turbo-machinery, helicopter gear trains or industrial manufacturing equipment), devel-

opment of smart buildings and medical applications.

Besides offering certain capabilities and enhancements in operational efficiency in these
conventional applications, distributed sensing can assist in the effort to increase alertness to
potential terrorist threats [45].

Two ways to classify sensor networks are whether or not the nodes are individually ad-
dressable, and whether the data in the network is aggregated. The sensor nodes in a parking
lot network should be individually addressable, so that one can determine the locations of

all the free spaces. This application shows that it may be necessary to broadcast a message



to all the nodes in the network. If one wants to determine the temperature in a corner
of a room, then addressability may not be so important. Any node in the given region can
respond. The ability of the sensor network to aggregate the data collected can greatly reduce
the number of messages that need to be transmitted across the network. This idea of “data
fusion” is formally defined below.

Data Fusion is a process dealing with the association, correlation, and combination of
data and information from single and multiple sources to achieve refined position and identity
estimates, and complete and timely estimates of situations and threats, and their significance
[31]. The process is characterized by continuous refinements of its estimates and assessments,
and the evaluation of the need for additional sources, or modification of the process itself,
to achieve improved results. The process of fusion over a distributed sensing environment
might be centralized (a central fusion center which “fuses” the information from the sensors
in the network) or decentralized (no single central fusion center).

These networks are usually constructed with one of these basic goals

e Determine the value of some parameter at a given location : In an environmental
network, one might want to know the temperature, atmospheric pressure, amount of
sunlight, and the relative humidity at a number of locations. This example shows that
a given sensor node may be connected to a number of different types of sensors, each

with a different sampling rate and range of allowed values.

e Detect the occurrence of events of interest and estimate parameters of the detected
event(s) : In the traffic sensor network, one would like to detect a vehicle moving

through an intersection and estimate the speed and direction of the vehicle.

e C(lassify a detected object : Is a vehicle in a traffic sensor network a car, a mini-van, a

light truck, a bus, etc.

e Track an object : In a military sensor network, track an enemy tank as it moves through

the network.



The Distributed Sensing Network Design Problem is the problem of designing a dis-
tributed sensing network with the (opposing) objectives of minimizing cost and maximizing
the performance (or efficiency or effectiveness) of the network. The problem, due to its
general nature and wide applicability might involve quite a few considerations such as the
required data be disseminated to the proper end users. In some cases, there are fairly strict
time requirements on this communication. For example, the detection of an intruder in a
surveillance network should be immediately communicated to the police so that action can
be taken. A general setting for this problem will include, besides other considerations, the

following

e Scalability : The networks might comprise of as many as 100,000 nodes and so scala-

bility is an important issue.

e Sensor mobility/self-organization : The sensors can be in motion (such as sensors on
ocean surfaces or in military applications), the sensor location at any instant of time
being known deterministically, probabilistically or might even be unknown. Given the
large number of nodes and their potential placement in hostile locations, it is essential

that the network be able to self-organize; manual configuration is not feasible.

o (Connectivity : In general, the initial establishment of connection between a pair of
sensors does not guarantee communication between them at all instances during the
time horizon under consideration. This is because there might be link failures. These
link failures are meant to model effects such as instrument malfunctions, lack of energy,

terrain effects and in adversarial environments, the effect of jamming.

o FEnergy Requirements : The sensors might be so placed that in general they may not
be always accessible, thus, making the energy required to keep the sensor functional,

an important criterion.

e Time Considerations : As mentioned above, some applications might have restrictions
on the maximum “delay” that might be allowed between the sensing and corresponding

end communication of information.



e (Collaborative signal processing : Yet another factor that distinguishes these networks
from MANETS is that the end goal is detection/estimation of some events of interest,
and not just communications. To improve the detection performance, it is often quite
useful to fuse data from multiple sensors. This data fusion requires the transmission of

data and control messages, and so it may put constraints on the network architecture.

e Querying ability : A user may want to query an individual node or a group of nodes for
information collected in the region. Depending on the amount of data fusion performed,
it may not be feasible to transmit a large amount of the data across the network.
Instead, various local cluster heads will collect the data from a given area and create
summary messages. A query will be directed to the cluster head nearest to the desired

location.

An example of the sensor types and system architecture: With the coming availability
of low cost, short range radios along with advances in wireless networking, it is expected
that smart sensor networks will become commonly deployed. In these networks, each node
will be equipped with a variety of sensors, such as acoustic, seismic, infrared, still/motion
videocamera, etc. These nodes may be organized in clusters such that a locally occurring
event can be detected by most of, if not all, the nodes in a cluster. Each node will have
sufficient processing power to make a decision, and it will be able to broadcast this decision
to the other nodes in the cluster. One node may act as the cluster master, and it may also
contain a longer range radio using a protocol such as IEEE 802.11 or Bluetooth.

Here, we consider the network design problem from a tracking viewpoint, and will be
primarily interested in issues such as sensor connectivity, sensor mobility, sensor communi-

cation (and data fusion) and jamming.

1.2 Literature Review of Related Topics

Almost all the issues that we would be concerned with are characteristic of the Wireless
Ad Hoc networks, an important sub-class of the Distributed Sensing Networks, and the

corresponding literature review is presented below.



1.3 Literature review on Wireless Ad hoc Networks

Ad hoc networking is now an important part of mobile communication and computing. An
ad hoc network is a self-organizing multi-hop wireless network, which relies neither on fized
infrastructure nor on predetermined connectivity. All the entities in an ad hoc network can be
mobile. The communication between network components is carried over a wireless medium
and the network topology changes depending on the node mobility. The main advantage
of such networks are that they can be rapidly deployed and therefore applications of these
are in situations which either lack fixed infrastructure or are at high risk; e.g. in military
communications, disaster management, law enforcement, etc [50].

Sanchez et. al. [56] discuss some of the issues involved in these networks and broadly

classified them as

1. Network Topology
2. Location Management

3. Routing Management

These topics are discussed briefly here and a more comprehensive review could be found

in Patel 03 [50].

1.3.1 Network Topology

Typically, the topology in an ad hoc network is either flat or hierarchical.

In a hierarchical topology, nodes are partitioned into groups called clusters, with one
node chosen to perform the function of a cluster head. Depending on the number of
hierarchies, such networks can have one or more tiers or levels. The cluster head is responsible
for keeping track of locations of the nodes (also referred to as location management) in its
cluster. Also, routing between two nodes in different clusters are always through their
respective cluster heads. A cluster head, on getting the message from the source node,
passes it to a node in the higher level, which, in turn, sends it to its cluster head (if the

message needs to go hierarchically "upward”) or to a neighboring node in the same cluster (if

6



Figure 1.2: 3-tier Hierarchical Network Architecture

the message is to remain in the same level or needs to be sent "downward”). Ramanathan
and Steenstrup [53] present Multimedia support for Mobile Wireless Networks (MMWN)
based on hierarchical structure. MMWN is a modular system of distributed, autonomously
adaptive algorithms that cooperate to support distributed, real-time multimedia applications
in large, multihop mobile wireless networks. A typical hierarchical network is shown in Fig.
1.2.

In a flat architecture, all the nodes are equal and each of them act as a router. Connections
are established between nodes which are in close proximity and routing is constrained only
by connectivity conditions and possibly by security limitations. Fig. 1.3 shows a diagram of
a flat network.

Haas and Tabrizi [28] present a comparison between hierarchical and flat networks. The

authors favor the flat architecture citing the following advantages:

1. In a flat network, the routing is optimal, and often more reliable since usually more
than one path exist between source and destination nodes. In hierarchical networks,

however, cluster heads are single points of failure and therefore these routes are more



Figure 1.3: Flat Network Architecture

susceptible to attack.

2. Nodes in flat network transmit at a significantly lower power than the transmission
power of cluster heads in hierarchical networks. This results in more network ca-
pacity, less expense in power and a ratio of Low Probability of Interception/Low

Probability of Detection.

3. Also, in a flat network, no overhead is associated in dynamic addressing, cluster creation

and maintenance and mobile location management.

On the other hand, a major disadvantage of flat networks is that they are not scalable.
Mobility management is simpler in a hierarchical network since the cluster head keeps the

database containing locations of all nodes in its cluster.

1.3.2 Mobility or Location Management

Mobility or location management deals with keeping track of locations of all the mobile nodes
within the network. To maintain current locations of each node in a network, it is necessary
to maintain a large database with periodic or continuous updating. Location Management
can be classified on the basis of this update into Static and Dynamic strategies. In static
strategies, the location is updated at predetermined set of locations, whereas in dynamic
strategies, the nodes (end-users) determine when an update should be generated based on
its movement. Kasera and Ramanathan [34] consider the location management problem

in a hierarchically organized multi-hop wireless network where all nodes (switches and end-



users) are mobile. Cluster heads work as location managers for each cluster to maintain the
association database and perform other functions. Their location management mainly deals
with location updating, location finding and switch mobility. Location updates occur when

one of the following events happen [34, 53]:
1. End-user reaffiliates to some other switch.
2. The switch to which the end-user is affiliated moves to some other cluster.
3. Cluster reformation such as cluster splitting or merging.

Their approach doesn’t seem to work in a flat network, however, since there is no equiv-
alent to cluster heads.
However, in [28], Haas and Tabrizi have made a case for flat networks with zone routing

as described in the next section.

1.3.3 Routing Management

In ad hoc networks the routing has to be determined dynamically and the literature for rout-
ing protocols is divided into Proactive or Table Driven Routing Protocol, Reactive
or On-Demand Routing Protocol and Hybrid Protocol, the last being a combination
of the first two.

In a proactive protocol, the route between each pair of nodes is continuously maintained
in a tabular format. This table is updated on a continuous basis, recording the changes in
the network topology. Thus the delay in determining the route is minimal, but maintaining
the table is a costly affair which is wasteful for both time and bandwidth. Some of the

protocols cited in the literature are:
1. Destination-sequenced Distance-Vector Routing (DSDV) [51].
2. Clusterhead Gateway Switch Routing (CSGR) [21].

3. Wireless Routing Protocol (WRP) [44].



In a reactive protocol, routes are determined on a need to basis. That is, when a packet
is to be delivered from source node to the destination node, a route discovery procedure is
initiated and a route is determined through a global search procedure. This would result in
large delays and are therefore unacceptable in applications where long routing delays cannot

be allowed. Some of the protocols cited in the literature are:
1. Ad Hoc On-Demand Distance Vector Routing (AODV) [52].
2. Dynamic Source Routing (DSR) [33].
3. Associativity Based Routing (ABR) [58].
4. Temporally Ordered Routing Algorithm (TORA) [49].

Hybrid protocols combine the advantages of both reactive and proactive protocols. Haas
[27] proposed Zone Routing Protocol (ZRP), a hybrid protocol based on the notion of routing
zone. In this protocol, each node pro-actively determines the routes between itself and nodes
within its routing zone. Thus whenever a demand arises with little effort the route can be

determined among the node not in the routing zone. Some of the advantages of ZRP are:

1. It requires only a relatively small number of query messages, as these messages are

routed only to peripheral nodes, omitting all other nodes within the routing zones.

2. As the zone radius is significantly smaller than the network radius, the cost of updating
the routing information for the zone topologies is small compared to a global proactive

mechanism.

3. ZRP is much faster than a global reactive route discovery mechanism, as the number

of nodes queried is very small compared to the global flooding process.
4. Tt discovers multiple routes to the destination.

5. The path determined by ZRP needs less number of hops and therefore is more stable.

10



1.3.4 Clustering Algorithms

Clustering of nodes in ad hoc networks are done in order to use the wireless resources
efficiently by reducing congestion and for proper location and routing management. A large
variety of algorithms have been proposed in the literature for clustering in ad hoc networks,

common features considered by these clustering algorithms being:

1. Stability: The node mobility should not cause frequent changes in clusterhead assign-

ment and clusterhead should be comparatively less mobile.

2. Load Balancing: The cluster should neither be densely populated nor scarcely popu-

lated.

3. Battery Power: Cluster head consumes more power than other nodes. Thus the solution

should not cause excessive drainage of some nodes over others.

4. Transmission Range and Signal Strength: Clusterhead should have sufficient transmis-

sion range and signal power to reach all the nodes in its cluster.

The clustering algorithms can be broadly classified as Graph based and Geographical
based clustering. Graph based heuristics view the network as a graph, whereas Geographical
based heuristics uses Global Positioning System (GPS) to accurately determine the location
and velocity of the nodes in the network. In general, the message cost of maintaining a cluster
is better for graph-based clustering, whereas the number of nodes without a clusterhead is
smaller for geographical clustering. Graphical clustering, however, is more suitable when

nodes have widely varying transmission ranges.
Graph based Clustering

Since the clusterhead selection is an NP-hard problem [6], all existing solutions available are

based on heuristic approaches.

e Highest Degree Heuristic: Degree of a node is defined as the number of nodes

within its transmission range. The degree based heuristic is a modified version of the

11



one in [48]. The node with highest degree is selected as clusterhead and with all the
nodes within its transmission range forms the cluster. The process continues until all
nodes are assigned to a clusterhead. Load balancing is poor but the stability of the

cluster is good.

Lowest ID Heuristic: Each node has a unique identifier. In this heuristic, the node
with lowest id is selected as clusterhead [26] and all nodes within its transmission range
form the cluster. The process continues until all nodes have a designated clusterhead.
Performance is better than highest-degree heuristic [21]. Excessive drainage of lower

id nodes is found.

Node Weight Heursitic: In this heuristic Basagni [5] assign a weight of -v to a node
with a speed of v units. The selection criteria is same as the highest degree heuristic.
A stable solution is obtained, i.e. the number of clusterhead reassignment is small. No

other features are captured in the heuristic.

Weight Based Clustering Algorithm: Chatterjee et al. [18] propose a weight-based
clustering algorithm where the weight of each node is updated periodically. Here the
authors assign weight to each of the features such as Load balancing, Battery Power,
Signal Strength and Mobility. The solution obtained from this algorithm has less
reassignment of clusterheads and flexibility of changing weight to give more weightage

to certain features than others.

MOBIC Clustering Algorithm: Basu et. al. [7] propose a distributed clustering
algorithm called MOBIC for mobile ad hoc networks (MANET). This is based on
relative mobility metric for clusterhead selection. All nodes send a “Hello” message
to all of their neighbors and each of the node finds it’s relative mobility metric by
a formula using the signal strength of the received message. Each node shares it’s
mobility metric with other nodes in it’s transmission range and the node with least
mobility metric assumes the position of clusterhead. The results in the paper show

that the algorithm has 33% lower rate of clusterhead change.

12



Geographical based Clustering

This algorithm uses GPS (Global Positioning Systems) to find the latitude, longitude and
(relative) velocity of the nodes and uses this information to form clusters based on the
spatial density. The clusters look like rectangular boxes (defined by grids) unlike traditional
clustering. The clusterhead is elected among the centrally located members of each cluster.
The cluster reformation is inevitable (necessary) due to node mobility.

The clustering algorithm works using a 2-stage process [20], where the first stage, Central
Periodic Clustering Algorithm is a periodic procedure to form clusters based on spatial
density for the entire network. This stage is carried out by a central global manager. This

stage is divided into
1. Box Generation: Divides the region into small boxes.

2. Box Size Refinement: Checks the size of box and restrict the ratio of length to breadth
of the boxes to 1.5.

3. Node Density Adjustment: Removes boxes with no nodes in it and merges boxes with

less nodes and splits boxes with high node density.

The second stage, Cluster Maintenance is a maintenance algorithm executed locally
within each cluster between two executions of the periodic protocol. The outcomes of the
algorithm includes changes in cluster membership, clusterhead responsibility, merging and

splitting based on spatial density, etc.

1.3.5 Coverage Issues

One of the fundamental issues that arises in wireless ad hoc networks, in addition to location
calculation, tracking, and deployment, is coverage. Due to the large variety of sensors and
applications, coverage is subject to a wide range of interpretations. In general, coverage can
be considered as the measure of quality of service of a sensor network. For example, in a fire

detection sensor network, one may ask how well the network can observe a given area and

13



Figure 1.4: Voronoi Diagram of a Set of Randomly Placed Points in a Plane [39].

what the chances are that a fire starting in a specific location will be detected in a given
time frame [39].

Meguerdichian et. al. [39], combined computational geometry techniques and constructs
such as the Voronoi: Diagrams with graph theoretical algorithmic techniques to propose
a provably optimal polynomial time algorithm for coverage in sensor networks. The use
of Voronoi diagram efficiently and without loss of optimality, transforms the continuous
geometric problem into a discrete graph problem. In 2D, the Voronoi Diagram of a set of
discrete sites (points) partitions the plane into a set of convex polygons such that all points
inside a polygon are closest to only one site. This construction effectively produces polygons
with edges that are equidistant from neighbouring sites (Fig. 1.4).

It should be pointed out here that the coverage problems discussed in this section could

14



be interpreted to refer to the coverage of terrain or system which needs to be “covered”,
which is different from the coverage of sensors that we will be discussing in the subsequent
chapters. The primary difference being that the former is generally a continuous spacial
and temporal problem while the latter is a discrete one. Thus, the literature review on
the Covering Models, discussed in the next section is more from an Operations Research

perspective.

1.4 Literature review of Covering Models

Covering location problem is a genre of location problem based on the notion of “coverage”.
A node is said to be covered, if it lies within an acceptable distance of at least one facility
or it can be served within a prespecified time. The quality of the service required or the
criticality of the service governs the threshold distance (or time). The covering location
problem addressed in the literature are mainly based on the following basic models: (1) Set
Covering Location Problem (SCLP) and (2) Maximal Covering Location Problem (MCLP).
In SCLP, the objective is to cover all demand with least number of facilities. Whereas in
MCLP, the objective is to cover maximum demand with a restricted number of facilities. In
majority of the literature both demand nodes and potential facility locations are a discrete
set of points and thus their relevance to the sensor coverage problem on hand. A brief
account is presented here and a more comprehensive review can be found in [50].

We can broadly classify the Covering literature into the following two categories:

1. Deterministic Covering Models

2. Stochastic Covering Models

1.4.1 Deterministic Covering Models

Models in which all input parameters are deterministic are considered here.
The earliest work in the area of covering is dealt by Toregas et al. [59]. They model
the location of emergency service facilities as a set covering location problem with equal

costs in the objective function. The objective is to locate minimum number of facilities such

15



that the maximum response time for attending any demand node is less than a specified
threshold and every demand node will be attended by at least one facility. The solution to
this problem indicates both, the number and the location of the facilities that provide the
desired service. In their paper, to achieve a better problem structure the authors assume that
the demand nodes and potential facility locations are finite points in a plane and facilities
can only be placed at demand node locations. The authors also assume that the distance and
minimum response time between every pair of points in the plane are known. A standard
linear programming code has been used to solve the problem with the addition of cuts in
case of fractional results.

Later in 1974, Church and Revelle [23] look at the covering model from a different per-
spective where there is a restriction on the number of facilities to be located. The objective
of the model proposed is to cover maximum number of demand nodes with limited resources
(fixed number of facilities) such that the covered node is within the desired service distance
(S) of its closest facility. The authors designate the problem as Mazimal Covering Location
Problem (MCLP).

In order to overcome the uncertainity of a facility being operative at all times, the concept
of multiple coverage comes into the picture. One of the early works in this area is cited in
Hogan and Revelle in [32]. In this paper, the authors introduce the concept of multiple
coverage in the context of classic covering models: the set covering location problem and the
maximal covering location problem. The Maximal Backup Coverage Problem is modeled as
a multi objective formulation in this work.

In the paper [10], Batta et al. reconsiders the SCLP and the MCLP with multiple
units required by the demand nodes. Their work can be viewed as a generalization of the
concept of backup coverage by Hogan and Revelle [32]. Here the authors model separate
formulations for SCLP and MCLP. Also an important criterion considered in modeling was
that the demand which requires greater number of units to respond is more critical and hence
the model requires the closest service facility to be closer than the one which requires less
units. The authors first transform the problem into a 0-1 integer program and then apply

implicit enumeration branch and bound algorithm to solve the problem.
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Church et al. [22] consider the distance traveled to cover these demand nodes in their
formulation. The authors formulate the problem as a two-objective location covering problem
which directly considers the travel distance that uncovered demand must traverse to reach
its nearest facility. A Lagrangian relaxation method was used to solve the problem.

Moon and Chaudhry in [43] introduce an additional aspect to the set covering location
problem of providing a secondary coverage to the facilities providing primary coverage to the
demand nodes. They term the problem as a Conditional Covering Problem (CCP). The CCP
requires facilities to be located such that all demand nodes are covered within an acceptable
distance or time of the facility. Also any two facilities are no farther away than a specified
distance. The authors model the problem as an Integer Program and solve the relaxed linear
program with cut constraints. Later in 1987, Chaudhry et al. [19] proposed seven greedy
heuristics for solving the CCP.

Revelle et al. in [54] extend the notion of CCP [43] through the Mazimal Conditional
Covering Problem (MCCP I and MCCP II) and the Multiobjective Conditional Covering
Problem (MOCCP). The objective of MCCP is to locate a given number of facilities to
maximize the facilities which are themselves covered by another facility within a prespecified
distance. The MCCP I prevents the supporting facility to be located at the same location,
whereas MCCP II permits the supporting facility to be stationed at the same node. The
MOCCP relaxes the constraint that all nodes should have a primary coverage. They model
both MCCP and MOCCP as a Linear Integer Program and solve the relaxed LP using a
Branch and Bound procedure.

Berman and Krass [12] relax the assumption made in traditional MCLP that coverage
of a demand node is binary (i.e., either fully covered or not covered at all). The authors
introduce a generalized version of MCLP (GMCLP) with partial coverage of demand nodes.
They assume that for each demand node, a multiple set of coverage levels, with corresponding
coverage radii are specified. The GMCLP is shown to be equivalent to the Uncapacitated
Facility Location Problem (UFLP).
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1.4.2 Stochastic Covering Models

Models having one or more input parameters that are stochastic in nature are considered
here.

Chapman and White [17] were the first to consider the unavailability of the facilities
covering the region. They came up with the probabilistic version of SCLP. The model
ensures that the probability of a demand node being served by at least one facility is greater
than or equal to a specified reliability level a.

Later Daskin [25] introduced a variant of the MCLP that considers the possibility that
facilities may be unable to respond to demand at all times. In both SCLP and MCLP, it
was assumed that the facilities will be able to provide service to all the demand nodes such
that they are within the desired distance S. This paper relaxes the above assumption and
associates a probability of a facility being operative. In the Mazimum FEzpected Covering
Location Problem (MEXCLP), introduced by Daskin [25], every demand node will have
potentially more than one facility to cover itself. In other words, not all facilities will be able
to respond to demands at all times, i.e., we need to consider the probability of a region being
covered. Here the author assumes that the probability p of a facility working is independent
of other facilities and p is same for all facilities. A single node substitution heuristic algorithm
was proposed for solving the MEXCLP.

Later in 1989 Batta et al. [9] relax three of the assumptions made in the MEXCLP model
viz. facilities operate independently, facilities have the same working probabilities and the
probabilities are invariant with respect to their locations.

The covering literature which considers the unavailability of certain facilities for service
due to facility failing or facility serving some other customer is termed as Reliability Covering
Problem (RCP). Ball et al. [3] consider the RCP in which the given routes service various
stops (e.g., in a transportation system). They address reliability with respect to possible
route failures in a covering context. The authors show that the RCP is N P-hard on both
directed and undirected networks. Some polynomially solvable cases are developed by the

authors when some additional structure is imposed on the routes of the tree.

18



Marianov and Revelle in [37] develop a queuing model for the probabilistic set covering
location problem considering the unavailability of the facilities to respond to demand (when
they are serving some other customer) at certain times. The objective of the model is to
minimize the total number of facilities required to cover all demand with a minimum re-
liability a. The paper explicitly considers the dependence of the probabilities of facilities
being busy, when the facilities are in the same region. For each region the author models the
behaviour as an M/M/s-loss queuing system ( a Poisson arrival, exponentially distributed
service time, s servers, loss system). They solve the relaxed LP using a branch and bound

procedure.

Marianov and Serra [38] model the probabilistic MCLP with a restriction on the maxi-
mum waiting time for any demand or the maximum queue length. They model the problem
as a 0-1 integer program and heuristic solutions are also presented.

Melachrinoudis and Helander in [40] consider the problem of locating a single facility on
an undirected tree with n nodes in the presence of unreliable edges. The authors assume
that the probability of failure of the edges are independent of each other and the nodes are
perfectly reliable. The objective of this work is to find a network location that maximizes
the expected number of nodes reachable by operational paths from a given service facility. A
decomposition formula is developed by the authors. The authors also present two polynomial
time algorithms for this problem which are possible because of the uniqueness of paths in
trees and also because the problem is restricted to locating a single facility. They also

A more detailed review on covering literature can also be found in [46, 57, 61].

1.5 Literature Review of Dynamic Models

The problem to be considered is temporal in nature and correspondingly, we present a
literature review of some dynamic models, in particular, The Dynamic Plant Layout Problem
and The Stochastic P-Median Problem. Again a much more comprehensive review can be

found in [50].
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1.5.1 Dynamic Plant Layout Problem

The Static Plant Layout Problem (SPLP) considers that the material flow among given
entities is same for all periods and attempts to minimize the total material handling cost by
assigning a given number of facilities to a set of locations. The SPLP is often formulated as
a Quadratic Assignment Problem.

Rosenblatt [55] introduced the Dynamic Plant Layout Problem (DPLP), where the ma-
terial flow is different for each period. The author considered a deterministic environment
where the material flow is known for each period of time. Given that the locations of facilities
is allowed to change, the DPLP model considers tradeoff between the material handling cost
and the relocation cost. A dynamic programming formulation is developed to determine the

optimal layout for each period of the time horizon.

Batta [8] establishes a class of best possible upper bounds for the DPLP described in
[65]. The author shows that if the same layout is used for all periods, then the problem
reduces to solving a single SPLP where the flows between any two facilities for each periods
are added up to obtain the resultant flow.

Balakrishnan et al. [2] considers the dynamic plant layout problem (DPLP) with the
additional constraint on the total budget for shifting facilities. The authors term the problem
as Constrained Dynamic Plant Layout Problem (CDPLP). They formulate this problem as
a Quadratic Assignment Problem similar to the SPLP.

Montreuil and Laforge in [42] incorporate the probabilistic nature of the future require-
ments in the Dynamic Layout Design model. The model requires the user to input the
scenario tree of the probable future. The authors formulate the problem as a linear pro-
gram.

Yang and Peters [62] model the DPLP considering a rolling horizon planning time window
to obtain a robust layout design in a flexible manufacturing system. An efficient heuristic
solution procedure is also proposed.

Kochhar and Heragu [35] provide a genetic algorithm based heuristic for the dynamic
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plant layout problem for two consectutive planning periods. The algorithm, Dynamic Heuris-
tically Operated Placement Evolution (DHOPE) attempts to find the layout for the next
period, given the current layout with the objective of minimizing the rearrangement cost
and the total material handling cost.

Baykasoglu and Gindy [11] solves the DPLP problem using a simulated annealing based

procedure.

1.5.2 Stochastic P-Median Problem

In this section, some of the stochastic models applied to the classical p-median location
problem are explored.

The p-median problem is a class of location problems where the objective is to locate p-
facilities (medians) such that the sum of weighted distance (or travel time) between demand
nodes and the closest facility is minimized. The p-median problem was introduced by Hakimi
[29, 30], who that one of the optimal solutions of the p-median problem consists of locating
the facilities only on the nodes of the network.

Mirchandani and Odoni [41] extended the p-median problem for networks where link
traversal times are assumed to be a random variable with a known discrete probability
distribution over a finite set of values including infinity representing link failure. Since there
is a finite number of identifiable potential sites for facility location, the authors formulate the
stochastic median location problem as an integer linear program. They show the existence
of an optimal solution under a reasonable set of assumptions: and thereby corroborates
Hakimi’s [29] result. The authors further determine that if the utility function for travel
time is convex and non-increasing, at least one set of expected optimal k-medians exists on
the nodes of a network (oriented and non-oriented).

Berman and Odoni [14] relaxed the assumption that the facilities have to be located
permanently at a given location and allowed the facilities to be relocated at a cost with
change in the network states. The authors present a more realistic version of the problem
of locating facilities on a stochastic network where the travel time on a link is a random

variable and relocation of facilities is allowed on a network in a reaction to the changes in
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the state of the network. Transition among the states of the network are assumed to be
Markovian.

Later Berman and LeBlanc [13] developed a polynomial time heuristic for solving the
stochastic p-median problem with relocation of facilities allowed with change in the state of
the network.

Later Berman and Rahnama [15] extend the work of Berman and Odoni [14] with the
only modification that the location of the p facilities depends on the previous state unlike
assumption 4 (mentioned previously) of [14].

Carson and Batta [16] show for a case of locating an ambulance in a University that a
significant amount of savings is achievable, when relocation of ambulances is allowed based
on the temporal variation of demand. The performance measure adopted is to minimize the
system-wide average response time to a call.

Vairaktarakis and Kouvelis [60] model the 1-median location problem on a tree network
considering the dynamic aspects and/or uncertainty involved in the demands of the node
and the length of the links’. The node demand and links length are either dynamic, i.e., a
linear function of time or uncertain given by a finite number of scenarios.

Averbakh and Berman [1] consider the 1-median problem with the uncertainty involved
in the weights (demand) of the nodes of the network.

Current et al. [24] approach the dynamic facility location problem with uncertainty

involved in the total number of facilities to be located.

1.6 Research Objectives and Thesis Organization

The research objective is to capture spacial and temporal dynamics of sensor movement and

information flow in a distributed sensing framework. These can be enumerated as:

1. To propose a mathematical model for optimally locating cluster heads in a capacitated

distributed sensing network.

2. To capture mobility of sensors and link failures due to reliability issues or jamming.
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3. To propose solutions that are effective in real time.
This thesis, thus, intends to generalize some of the earlier work by Dipesh Patel [50].

1.6.1 Thesis Organization

Chapter 2 is comprised of the detailed description of the problem and the proposed Mized
Integer Linear Program MILP formulations, the two formulations differing in the way the
capacity constraint is modelled. Chapter 3 presents the proposed solution methodologies.
Two greedy heuristics are proposed and a Column Generation Heuristic is proposed to further
improve their solutions. Numerical studies carried out for these solution methodologies are
discussed in Chapter 4. Chapter 5 presents some theoretical generalizations under non-steady
state conditions and also, under the effect of jamming. Finally, conclusions drawn from the

research and possible avenues for future research are discussed in Chapter 6.
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Chapter 2

Problem Formulation

The systems that are modelled in this research are primarily Defense related. However, the
approach (in most cases) and the results (in some cases) could be extended to most of the

Distributed Sensing systems illustrated in Section 1.1.

2.1 Description of the Problem

The scenario under consideration is that of a battlefield - land, sea, air or a combination of
these. The sensors could be radars, soldiers, tanks, etc. (on the ground), sonars on ships,
submarines (in water) or unmanned aircraft vehicles (UAVs), other airborne surveillance
systems (in air). These entities are some of the sources of information that could be used to
recognize threats to the system and thus aid in the task of gathering intelligence. The infor-
mation from these various sources is then assimilated through the process of Data Fusion,
defined in Sectionl.1.

Centralized data fusion, in which data is fused at a single processor can be carried out
by Command and Control Centers or even on a smaller scale by satellites etc. Currently,
however, the emphasis is shifting towards Decentralized data fusion, in which data from
groups of sensors (reffered to as clusters) are processed together at their corresponding fusion
centers (reffered to as cluster heads) and then broadcast or transmitted to other cluster heads.
Incoming data for fusion at cluster heads might thus be pre-fused in some sense (though not

always). This abstraction is represented in Fig.2.1, where the upper plane is that of the
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cluster heads and the lower one that of sensors.

Figure 2.1: Abstract representation - Cluster heads and sensors [50].

In a military setting, such cluster heads are suitably represented (for the purpose of
modelling) by Airborne Warning and Control Systems (AWACS), though it should be noted
that they could as easily be a tank in a regiment or the captain of an infantry unit.

The sensors are in general spatially separated and may not be in close proximity of one
another. Hence a pertinent question is: where should the data fusion take place? In other
words, how should the cluster heads be placed so as to maximize the information
obtained (fused) from the sensors? This is the primary question that this research
aims to address. Realistic scenarios would involve sensors and/or cluster heads that could
be mobile. An implication of this fact is that the data communication takes place through
wireless rather than wired networks. This gives rise to additional challenges like network
reliability in the system. Under hostile conditions other important considerations might be
jamming and /or ezposure (the latter is not addressed as part of this work).

The fusion is typically carried out by AWACS which are aircrafts that possess fusion
processors to carry out the data fusion process. The objective of the work is to locate these
AWACS to maximize data gathered from the sensors.

In this work it has been assumed that the AWACS are located at discrete points. This
may not be a very strong assumption since, as discussed in Section 1.3.5, continuous space

might be discretized using the Voronoi diagrams. Even on a more simplistic scale, the space
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in which the AWACS are located could be broken down into grids (depending on the time
period and speed of the AWACS) with the center of the grids being labelled as the point of
occupancy (during that time period).

Each AWACS covers a set of sensors depending on its location and transmission range.
The sensors covered by an AWACS can be considered to form a cluster with the AWACS as
its clusterhead.

The data transfer takes place through wireless communication. Typical issues related to
wireless communication are transmission range, available bandwidth, etc. Since the sensors
are mobile they may move out of the range of the cluster heads or the bandwidth restrictions
might disrupt or disconnect the communication link between them. In addition to this, a
communication link is prone to enemy attack. Hence a communication link has an associated
probability of failure (which might include instrument malfunction, foliage effects and terrain
effects). Thus it is extremely desirable that each sensor should have multiple coverage, i.e.
each sensor should be covered by more than one cluster head. This ensures maximum
network reliability in the event of breakdown of the communication link between a sensor
and its clusterhead due to hostile jamming, weather conditions, etc. In case of a catastrophic
failure of a communication link, the sensors could retain the capability to switch to a backup
clusterhead.

Additionally all the sensors are capable of moving and they can change their position with
time in order to perform the task assigned to them. Since the sensors are mobile, relocation
of AWACS is necessary to achieve maximum coverage of the sensor data. However to ensure
a stable location strategy and for practical implementation purposes, we either restrict the
maximum number of relocations for the entire “time horizon” or associate a cost to every
relocation of an AWACS (termed as relocation cost). Thus we consider a trade-off between
data coverage and relocation cost. Since the objective has two terms (data obtained and
relocation cost), which may not share the same units, one might think of the relocation cost
as the amount of information lost in the process of relocation. Our objective is to achieve this
tradeoff over a fixed time period, addressed previously as time horizon. The time horizon is

split up into discrete time periods of equal length. Relocation of AWACS is permitted only
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at the beginning of these time periods.

2.2 Mathematical Approach

As is quite evident, these problems are suited to graphical representation and graph theo-
retic approaches, with nodes representing the sensors (having various properties) and arcs
between the sensors representing the feasibility of communication between the correspond-
ing sensors (i.e., links). Each arc might have a cost (representing the cost of constructing
and maintaining the connection) and a capacity (representing, for instance, the bandwidth)
associated with it.

Given the general problem, we start with simpler versions of the problem and build mod-
els to incorporate more and more features. Consider, initially, the problem of optimally
locating cluster heads with respect to sensors in a network. The cluster heads are assumed
to only assimilate the information sensed by the sensors. The sensors do not communicate
with one another and neither do the cluster heads. Thus, the sensors and the cluster heads
are functionally different and this gives a special structure to the network, that of a bipartite
graph (Fig. 2.2). Each cluster head is said to “cover” a sensor at a given time instant if
it can communicate with it at that instant. Under steady-state conditions, the communi-
cation between the sensor and cluster head is assumed to be reliable with a fixed (known)
probability. The cluster heads are to be located so as to maximize the reliability of the
network. The sensors are all assumed to be identical and so are the cluster heads. The
sensors and the cluster heads are both assumed to be mobile. Thus, given sensor locations
at all instants of time, we need to come up with a sequence of optimal cluster head positions
for the different time periods over a finite horizon. It is assumed that the possible cluster
head locations might be discretised (to avoid non-linear formulations which arise in cluster
head placements over a continuous state space), and since the sensor locations are known,
the “coverage” of sensors with respect to possible cluster head locations is known and is
essentially captured by a constant. Also, a possible sensor location is assumed to cover a

given set of sensors which does not change during a given time period. This optimal cluster
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Figure 2.2: A Schematic showing cluster-heads and sensors [50].

head location problem has been attempted [50] and dealt with in the literature.
Called the Dynamic MEXCLP model [50], this is a generalized version of the MEXCLP
model proposed by Daskin in [25]. A brief review of the MEXCLP model is presented here.

2.2.1 MEXCLP

The objective of MEXCLP is to maximize the expected demand covered by locating a given
number of facilities. In MEXCLP, Daskin associates each facility with a probability p of
being inoperative. The model assumes that the probabilities of the facilities not working are

independent of each other and are same for all facilities.

The MEXCLP [25] is formulated as follows:
N n
Maximize Y > (1 —p)p’ 'diyi

k=1j=1
subject to
n N
Zyjk—Zrikxi < 0 \4 kzl,...,N, (21)
j=1 i=1
N
Yoz < n, (2.2)
i=1
r, € Z° vV i=1,...,N, (2.3)
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Yik € {0,1} V j=1,...,n,k=1,...,N. (2.4)

where the variables and their corresponding indices are defined as follows [25]:

1 = index for potential facility locations, 1=1,..., N,
k = index for demand nodes, k=1,...,N,
N = number of demand nodes,
n = number of facilities to be located,
D = the distance beyond which a demand node is considered
“uncovered”,
D;, = distance between potential facility location 7 and demand
node k,
dr = demand of node k,
D = probability of a facility failure (0 < p < 1),
. . 1, if Dy < D
Tk 0 otherwise.
The decision variables of the problem are:
x; = number of facilities placed at location ¢,
o 1, if demand node k is covered by at least j facilities
Yik = 0 otherwise.

From [25, 50|, the objective function maximizes the total expected coverage. The inner
summation in the objective function represents the number of demands that are covered by
at least j facilities in which the term (1 — p)p’ ! represents the weight associated with the
number of demands covered by at least j facilities for any demand node k. The objective
function is concave in j for each k. If node k is covered by m facilities, constraint (2.1)
assigns each of the variables yix, Yok, ..., Ymr @ value of 1 since the objective function is
a maximization function containing the term y;;. Constraint (2.2) restricts the maximum
number of facilities to be located. Constraint (2.3) is an integer constraint for the number

of facilities allowed to be located at location i. Constraint (2.4) is a binary constraint.
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In his work, Patel proposed several different formulations for the Dynamic MEXCLP

model. We enumerate these and present a review of the main model proposed [50]:
1. Dynamic MEXCLP with Relocation.

2. Dynamic MEXCLP with restriction on the mazimum number of relocations for the

entire time horizon.
3. Dynamic MEXCLP with location dependent relocation cost.

4. Dynamic MEXCLP for Clustering with Mobile Facilities. In this variant of the Dy-
namic MEXCLP, the assumption that the potential location of clusterheads (facilities)
are different from the location of the sensors is relaxed. Thus, instead of locating fa-
cilities at potential locations, sensors are chosen that act as the cluster head (fusion
node) for that time period. Since the sensors are mobile, the elected clusterhead is
itself a sensor. Thus cluster heads are also mobile and follow the same trajectory as

they followed when they were sensors.

®/ /® @  Occupied Facility Location
S (Clusterhead)
S Cg ) \@ ®© Demand Node
/ e A —  Displacement Vector
O/ ®/ rrrrrr @ /@ /@
o N e L.
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Figure 2.3: A snapshot of the network [50].

The formulation is similar to the one described in Section 2.2.2 with the only difference
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being that the set of potential facility location is same as that of the set of sensors in
this case. It should be noted that it is assumed that the performance of an entity as a

sensor is not affected when it is chosen to play the role of a cluster head.

In the Dynamic MEXCLP model, it is assumed that the facilities are perfectly reliable.
The demand nodes are assumed mobile, but their velocity vectors are assumed to be known
and hence there is an a priori knowledge about the exact location of demand nodes at any
given time. Under a given set of assumptions, the objective function structure for link failure
is similar to the objective function structure of the MEXCLP model where facility failure is
considered.

The following assumptions are made in the model:

1. Location of the sensors are known at any given instance.

2. Potential clusterhead locations constitutes a set of discrete points.
3. Relocation of facilities takes place at discrete time periods.

4. The clusterheads are perfectly reliable.

5. The probability of failure of all links is the same.

2.2.2 Dynamic MEXCLP with Relocation [50]

Due to the mobility of the sensors, the optimal location of facilities that maximizes the ex-
pected coverage in one time period may not necessarily be optimal in the next time period.
The relocation of facilities increases the expected coverage that would otherwise be obtained
without considering relocation of facilities. Hence in this model the facilities are allowed to

change location with time at an additional cost.

The dynamic MEXCLP with relocation is formulated as follows:

T n T
Maximize Y > Y (1-— PP dryine — Y3 Cwy,

t=0 kc® j=1 t=1i€A
subject to:
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n
Z Yikt — Z TiktLit
j=1

< 0 V k=1,...,|0,t=0,...,T,
€A

int < n vV t=0,...,T,

€A
Wit Z Lit—1 — Tt Y izl,...,|A|,t:1,...,T,
Wit Z Tit — Tit—1 A izl,...,|A|,t:1,...,T,
Ty € {0,1} \ ’izl,...,|A|,t:0,...,T,
wy > 0 V oi=1,...,|ALt=1,...,T,
Yikt S 1V jzl,...,n,k:1,...,|®|,t:0,...,T.

where the variables and their indices are defined as:

A
)

n

Dy

Tikt

C

set of potential facility locations.
set of demand nodes.

maximum number of facilities to be located.

maximum number of time periods in the horizon under consideration.

the distance beyond which a demand node is considered
“uncovered”.

distance between potential facility location 7 and demand
node k at time t.

demand per period of node k.

probability of a link failure per period (between any facility and
demand node). (0 <p < 1)

1, if Dy < U.
0 otherwise.

cost per unit change in the number of facilities at any location ¢
(one-half of relocation cost).

The decision variables of the problem are:
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o = 1, if a facility is placed at location ¢ at time ¢
@ 0 otherwise.

1, if demand node k is covered by at least j facilities at time ¢
0 otherwise.

wy = positive difference in the number of facilities at location
1 between time ¢ — 1 and time ¢
The objective function maximizes the expected demand covered allowing relocation of facil-

ities with time. If node k is covered by m facilities at time ¢, constraint (2.5) assigns each
of the variables y1xs, Y2ks, - - - , Ymre @ value of 1 since the objective function is a maximization
function containing the term y,j;. Constraint (2.6) restricts the maximum number of facil-
ities to be located to n for any time ¢. Constraints (2.7) and (2.8) determine the positive
difference between the number of facilities located at location i between time ¢ — 1 and t.
Constraint (2.9) is an binary constraint determining whether a facility is located at location
i. Constraint (2.10) is a non-negativity constraint. Constraint (2.11) restricts the variable
Yjre to take a value between 0 and 1. Patel made the following observations:

Observation 1:

In the formulation variables x;; are restricted to take only binary values. Constraints (2.7)
and (2.8) together represent w;; = |z;; — xy;_1|. Since z; and z; , are both integers w;;
assumes an integer value at optimality.

Observation 2:

Even though the variables y;; are continuous variables between 0 and 1, at optimality y;;

assumes binary values.

Patel [50] modelled the problem as a covering location problem with the objective of max-
imizing the expected demand covered by locating a given number of cluster heads. However,
even though modelling it as a communications network, one important aspect was not con-
sidered - bandwidth. The importance of capacity in communication networks, specially for
large scale distributed sensing networks cannot be over-emphasized. This research builds on

the Dynamic MEXCLP model by incorporating capacity constraints.
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2.3 Capacitated Dynamic MEXCLP model

The Dynamic MEXCLP model was proposed under an important assumption - that of unlim-
ited capacity. This assumption though simplifying, was quite unrealistic. The Capacitated
Dynamic MEXCLP model incorporates the capacity constraint and thus, is more realistic
in terms of capturing the dynamics of the distributed sensing system. Assumptions (explic-
itly enumerated below) regarding sensor and cluster behaviours remain the same otherwise.
Cluster heads are assumed completely reliable while all links have a (identical) steady-state
probability of failure. Sensors are mobile with known velocity vectors. The time horizon is
divided into equal time periods and relocation of cluster heads takes place at the beginning
of each time period.

Assumptions made while building the model:

1. Location of the sensors are known at any given instance.

2. Potential cluster head locations constitutes a set of discrete points.

3. Relocation of facilities takes place at discrete time periods.

4. The cluster heads are perfectly reliable.

5. The probability of failure of all links is the same.

6. Cluster heads are identical in all respects.

7. Transmission time is negligible and data is not transmitted in packets.

As can be seen, all the assumptions are the same as in the Dynamic MEXCLP model
except the last two which are essential to model the capacity constraint. The last but one
is required since a sensor is preferentially assigned to a cluster head location and not to a
cluster head. The last one is required to avoid consideration of queueing effects.

In order to incorporate the capacity constraint, each sensor needs to be assigned to one
of the cluster heads that is “covering” it. However, we still have link failure probabilities

and correspondingly, need multiple coverage of sensors. Thus multiple coverage still remains
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while preferential assignment of sensor to cluster head is incorporated. Once again (Fig.
2.4), it can be seen that due to the mobility of sensors, the optimal location of cluster heads
for one time period may not be optimal for the entire horizon. The trade off now is between

multiple coverage and preferential assignment on one side and relocation cost on the other.
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® O
. . © Occupied Cluster—Head Location
O ®  Sensor Node
@ —  Displacement Vector (Direction of

Movement of Sensor)

Coverage Cones__,.

Figure 2.4: A snapshot of the network

Two different formulations incorporating capacity restrictions are proposed. The formu-
lations differ in the way the capacity constraint is applied. In Formulation 1, the capacity
constraint is applied for each time period, while in Formulation 2, it is applied for the entire
time horizon. Thus, the second formulation is a relaxed version of the first.

The Capacitated Dynamic MEXCLP with relocation for the operational capacity case is

formulated as follows:

Formulation 1

T n T
Maximize Z Z Z(l - p)p’*ldkyjkt + Z Z CikRikt — Z Z C’wit,

t=0 k€O j=1 i€A k€O t=14€A
subject to
Zyjkt—Zriktxit < 0 \4 kzl,...,|@|,t:0,...,T, (212)
j=1 iceA
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int < n vV t=0, T
[ISTAN
Wit Z Tit—1 — Tit \ izl,...,|A|,t=1,...,T,
Wit Z Tit — Tit—1 \ izl,...,|A|,t:1,...,T,
Zikt S TiktLit A i:1,...,|A|,k:1,...,|®|,t:0,...,T,
oz <1 V k=1,...,|0|,t=0,...,T,
LISTAN
dezikt S Qit \ ’izl,...,|A|,t:0,...,T,
ke®
zw € {0,1} V i=1,...,|At=0,...,T,
wy > 0 V oi=1,...,|ALt=1,...,T,
yre < 1V j=1,...,mk=1,...,0,t=0,...,T,

Zikt € {0,1} V Zzl,,|A|,k:1,,|®|,t:0,,T

where the variables and their indices are defined as:

Tikt

Cik

Qit
C

set of potential facility locations.

set of demand nodes.

maximum number of facilities to be located.

maximum number of time periods in the horizon under consideration.

the distance beyond which a demand node is considered
“uncovered”.

distance between potential facility location : and demand
node k at time .

demand per period of node k.

probability of a link failure per period (between any facility and
demand node). (0 <p < 1)

1, if Dy < U.
0 otherwise.

value of preference of assignment of sensor k to cluster head location i
capacity of cluster head location ¢ during time period ¢

cost per unit change in the number of facilities at any location ¢
(one-half of relocation cost).

36



The decision variables of the problem are:
1, if a facility is placed at location ¢ at time ¢
Tt = .
0 otherwise.

z { 1, if sensor k is assigned to cluster head ¢ during time period ¢
ikt

0 otherwise.

- 1, if demand node k is covered by at least j facilities at time ¢
Ykt = 0 otherwise.

w;; = positive difference in the number of facilities at location
1 between time ¢t — 1 and time ¢

The objective function has three terms as compared to the Dynamic MEXCLP with
relocation. The first and last terms are the same, while the second term represents preferred
assignment of sensor to cluster head location (Assumption 7). Thus the objective function
tends to maximize demand covered and preferential assignment while allowing for relocation
of cluster heads over a time horizon. Constraints 2.16 ensure that sensor k is assigned to
cluster head location 7 only if location ¢ is occupied by a cluster head and sensor k can be
covered from location ¢. Constraints 2.17 ensure that a sensor is assigned to only one cluster
head during a time period. Constraints 2.18 are the capacity constraints for each cluster
head location for each time period. Constraints 2.22 force z;; to take a value of 0 or 1.

The formulation for the planning capacity case is:

Formulation 2

T n T
Maximize Z Z 2(1 — p)p’lfldkyjkt + Z Z CikZikt — Z Z C’wit,

t=0kcO j=1 1€EA kEO t=1icA
subject to

D yike — Y Tz < 0 V k=1,...,|0,t=0,...,T, (2.23)
j=1 i€EA
zy < n vV t=0,...,T, (2.24)
i€EA
Wit = Tip—1 — Tt \4 izl,...,|A|,t:1,...,T, (225)
Wit = Tip — Tit1 \4 izl,...,|A|,t:1,...,T, (226)
Zikt X TikeTit \4 ’i:1,...,|A|,k:1,...,|®|,t=0,...,T, (227)
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Zzikt S 1 \V/ kzl,...,|@|,t:0,...,T, (228)
iI€EA
T
t=1 ke®
zy € {0,1} V i=1,...,|ALt=0,...,T, (2.30)
wy > 0 V i=1,...,|A,t=1,...,T, (2.31)
gy < 1V j=1,...nk=1..,0t=0,....,T, (2.32)
e € {0,1} YV i=1,...,|ALk=1,...,|0,t=0,...,T. (2.33)

Here the variables and their indices remain the same as defined earlier except for @,
which is now replaced by @; standing for the capacity of cluster head location ¢ over the
entire time horizon (note again that all cluster heads are assumed identical).

A few remarks regarding the formulations:

1. Using arguments along the same lines as in [50], one can prove that the formulation
with regard to mazimizing erpected coverage remain the same as in the case of the
MEXCLP. Thus link failures or facility failures would both (independently) result in

the same formulation with respect to the coverage.

2. Observation 1:
In the formulation variables z;; are restricted to take only binary values. Constraints
(2.14) and (2.15) together represent w;; = |z;; — x3_1|. Since z;; and z;_; are both
integers w;; assumes an integer value at optimality. Thus, the same argument as in
[50] holds.
Observation 2:
Even though the variables y;;; are continuous variables between 0 and 1, at optimality

Yjke assumes binary values. This can be argued along the same lines as in [50].
3. zj: need not take 0 — 1 values unless defined to do so.

4. It might be noted here that the preferential assignment is an attempt to capture capacity

restrictions and is not completely accurate. This is because it only considers first order
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link failures and does not take into consideration subsequent assignments. That is,
if the link between a sensor and its most preferred cluster head location breaks down,

subsequent link assignments are not accounted for.

2.4 Chapter Summary

The problem is described and motivated starting with the MEXCLP and the Dynamic
MEXCLP models. Two different MILP formulations of the Capacitated Dynamic MEXCLP
are proposed. It is observed that properties holding for the Dynamic MEXCLP model also
hold true for the Capacitated Dynamic MEXCLP model. We also establish that the structure
of the formulation remains unaltered if link failure is considered instead of facility failure.

In Chapter 3, solution procedures proposed to solve the formulation are presented.
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Chapter 3

Solution Strategies

The Dynamic MEXCLP is N P-hard [50] since for fixed values of w;; (relocation variable),
it can be decomposed into 7"+ 1 Maximal Covering Location Problems, each N P-hard by
itself. Since the Dynamic MEXCLP is a special case of the Capacitated Dynamic MEXCLP
(corresponding to infinite capacity), the Capacitated Dynamic MEXCLP also is N P-hard.
Thus, in general, the Capacitated Dynamic MEXCLP can be expected to be computationally
intensive and tough to solve.

An initial thought might be: Why to develop special solution procedures and not just use

a standard commercial solver like CPLEX? The reasons are two fold:

1. With increasing problem size it becomes more and more difficult for commercial solvers
and in fact, large problems (representative of the real world applications) cannot even

be read by most solvers.

2. Commercial solvers employing standard Branch and Bound procedures may not use
the special structure of the problem and thus perform inefficiently with respect to
computational time. Since this problem has been developed with the aim of aiding
real-time decision making (under hostile conditions), computational time taken by
solution procedures is a critical issue. In the case when time is not of the essence (such

as network design during peacetime scenarios), solution quality would be important.

The formulation for the capacitated dynamic MEXCLP is quite similar to that of the
Dynamic MEXCLP, and correspondingly, we explore the solution procedures that are slight
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modifications of the ones proposed for the latter.

3.1 Solution Methodology: Heuristics

In [50], Patel proposed various heuristics for solving the Dynamic MEXCLP. They are:
1. Relocation Heuristic (RH), and
2. No-Relocation Heuristic (NRH).
3. Column Generation Heuristic (CGH).

Below, each of these are discussed in the context of the Capacitated Dynamic MEXCLP

problem.

3.2 Modified Relocation Heuristic

The Modified Relocation Heuristic (MRH) is a greedy heuristic, which picks the best n

locations, one at a time, for each time period. The RH algorithm is presented as follows:
1. Start at time period zero.

2. Calculate the sum of the demand covered and the preferred assignment for each poten-

tial location. The preferred assignment cannot exceed the capacity for that location.

3. Select the potential location with the maximum sum and place a facility at this location.
This potential location is now precluded from future placement of a facility for this

particular time period.

4. Since there exists a probability of failure of the link (p) between the facility placed
and the demand covered, a fraction of the demand is actually covered. Thus, update
the demand nodes covered by this facility by multiplying them by p. Use the updated

demand for future calculation of coverage for only this time slot.

5. Repeat steps 2 — 4 until all the facilities are placed for the time period.
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6. Repeat this procedure for all time periods. Relocation (between successive time periods
t and t + 1) only occurs if the net gain after relocation is positive (i.e., coverage +
assignment — relocation > 0). In order to take care of the relocation cost, add 2C
(since a change in number of facility at two locations constitutes a relocation of a
facility) to the sum of coverage and assignment of the potential location for time ¢+ 1,
if that location was selected in the previous time period ¢. Chose the maximum with

this new total and repeat steps 3 and 4 for that time slot.

The heuristic takes into consideration the link failure probabilities as well as the relocation
cost (but only between successive time periods).

Although the heuristic seems to perform reasonably well as discussed later in the results
section, it can be proved that it performs arbitrarily bad in the worst case. This can be
proved (along similar lines as in [50]) citing a particular example.

For this, we formally define the concept of an e-approximate algorithm (Papadimitriou
and Steiglitz [47] and Patel [50]):

Let A be an optimization (minimization or mazimization) problem with positive integral
cost function c, and let B be an algorithm which, given an instance I of A, returns a feasible
solution fg(I); denote the optimal solution of I by f(I). Then B is called an e-approzimate
algorithm for A for some € > 0 if and only if

le(f5 (D) —e(F )] <
(D)) =€

for all instances I.
Consider the following example:

For this example, consider:
Number of potential facility location = 2
Number of facilities to be placed = 1
Number of demand nodes = 1
Demand of node 1 = a

Number of time slots = T + 1
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Demand = a

Node 1 att=0

Coverage Radius

Potential Location 1 Potential Location 2

Demand = a

Node l att=T

.

Figure 3.1: Worst case analysis of NRH [50]

Probability of link failure = p

Preference to location 1 = ¢;

Preference to location 2 = ¢y (a +¢1 > ¢2 > ¢4)
Relocation cost = b (b > a + ¢3)

Capacity of each potential location = a

In this example, MRH selects potential location 1 for locating at time £ = 0 with the sum

of expected coverage and preferred assignment being (1 — p) * (a) + ¢; for that time period.

For time period ¢t = 1, potential location 2 has the maximum sum of expected coverage

and assignment among all potential locations. Thus MRH computes the gain in coverage

by switching to potential location 2 and its associated cost. Since (b > (a + (c2 — ¢1))), the

heuristic decides not to relocate and thus for time period ¢ = 1, the facility is located at

location 1. For all subsequent time periods, the heuristic chooses the facility to be located

at location 1, thereby attaining a sum total of coverage + assignment = (1—p)* (a*1)+c;.

However, from observation, the optimal solution is to locate the facility at potential location

2 for all time periods with the total of (1 —p) * (a*T) +co*T.
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Thus we have

o(fI)=1=p)x(axT)+co*T and
c(fs(I))=Q1-p)*(a*xl)+c

Hence, for MRH to be an e-approximate algorithm

le(fB(1)=c(f(D)]
=€
[(1—p)*(a*x1)4c1—((1—p)*(axT)+coxT)| <e

or, (1—p)*(a*T)+coxT
|ty —(T+ 250!
or, & p)T+ T Y-
1-p)a
T+ 62*3’761
or, T G- <e
(1-p)a
+02*T—cl
Thus, MRH is not e-approximate and further, as T' — oo, ﬂ(ii;f}“ — 1. In other
(1-p)a

words, te error between the optimal solution and the the MRH solution — 100%. Thus,

the heuristic can perform arbitrarily bad in the worst case.

3.3 Modified No Relocation Heuristic

The Modified No-Relocation Heuristic (MNRH) is also a greedy heuristic where the optimal
strategy will be to place facilities at locations which cover maximum demand for all time

periods. The MNRH algorithm is as follows:

1. Calculate the sum of total demand and preference covered by each potential location

for all time periods (noting that preference cannot exceed capacity in each time period).

2. Select the potential location with the maximum value and place the facility at this
location for all the time periods. This potential location is precluded for future place-

ment.
3. Update the demand of the demand nodes as discussed in the MRH earlier.
4. Repeat the above steps until all the facilities are placed.
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This heuristic also takes care of link failure probabilities in a similar fashion as MRH does
and is found to perform reasonably well for problem instances with high relocation costs.
However, again it can be proven to give arbitrarily bad solutions in the worst case. Consider

an example illustrated in Fig. 3.2 with the following parameters:

Number of potential facility location = T + 2
Number of facilities to be placed = 1
Number of demand nodes = 2
Demand of node 1 = a (a > b)
Demand of node 2 =b ((1 —p)xb* (T + 1) > a)
Number of time slots = T+ 1
Probability of link failure = p
Relocation cost (C') =0
Preference of node 1 to all potential locations = Preference of node 2 to all potential loca-
tions = ¢

Capacity of each potential location = a

Demand = a

Demand = a

Node 1 att=T

Node 1 att=0

Demand =b
Potential Location T+1
Potential Location 1 Node2att=0
Demand =b
Node2 att=T
Potential Location X
= J

Figure 3.2: Worst case behaviour of MNRH [50]
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Potential location X is selected by the heuristic for locating a facility for all time periods
with the coverage value of (1 —p) *b* (T'+ 1)+ c* (T + 1). In this example we can see
that demand node 1 moves with time from the coverage region of one potential location to
another. In order to maximize expected coverage, the facility should be relocated to the
potential location covering demand node 1 with each time period. The optimal solution to
the scenario is locating a facility at potential location 1 at ¢ = 0 and thereafter relocating
the facility to the potential location covering demand node 1 in the subsequent time periods.
The expected coverage attained by the solution is (1 —p) *a* (T + 1) + ¢ * (T + 1) (since
relocation cost = 0).

Thus, for MNRH to be an e-approximate algorithm

o(fI)=(1—p)*xa*(T+1) and
o(fp(I)) =(1—p)*xbx (T +1) is

|C(fB(I)Z—C(f(I))| <
(=€
|(1—p)*b*(T+1)+cx(T+1)—(1—p)*ax(T+1)—cx(T+1)| <e

or, (1—p)*ax(T+1)

or,“T’bge

or,1-2<e
a

Thus, MNRH is not e-approximate and further, as a — oo (and correspondingly T —
o0), 1 - g — 1. In other words, the error between the optimal solution and the MNRH

solution — 100%. Thus, the heuristic can perform arbitrarily bad in the worst case.

In a manner similar to the ones used for the two heuristics above, we can show that the
best amongst the two solutions provided by the heuristics when they are both indpendently
applied to the same problem instance can also be arbitrarily bad. It is again obtained using

a suitable combination of paramenters.
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3.4 Column Generation

The greedy heuristics, in the worst case, can give arbitrarily bad solutions. Their advantage
lies in the fact that they are fast. However, where the quality of the solution is of importance
and computation time is not, the solution provided by the heuristics may not be acceptable.
Thus, a Column Generation (CG) heuristic is proposed to further refine the solution obtained
from these greedy heuristics. This application of CG is similar to the one used by Patel [50].

Column generation (CG) heuristic is an efficient and widely used technique to solve
large-scale integer programs (for more information please refer [4, 36]). A modified column
generation approach is used here to solve the Capacitated Dynamic MEXCLP (refer [50] for
details. The column generation formulation is obtained by decomposing the original MILP
formulation Formulation 1 of the (Capacitated Dynamic MEXCLP with relocation cost) into

a “Master Problem” and a “Sub-Problem”. Their roles are explained in Fig. 3.3.

‘ Master Problem

Dual Multipliers

Columns

Sub Problem ‘

Figure 3.3: Column Generation Flow [50]

Some additional parameters and variables used in the formulation of the Master Problem

and the Sub-Problem:

F; = set of feasible solutions for time ¢.
Ts: = value of z;; if solution s is selected at time ¢.
Ysjkt = value of y;i, if solution s is selected at time ¢.

The decision variables of the problem are:-
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1 if solution s is selected at time ¢
Fst — .
0 otherwise.

3.4.1 Initial Basic Feasible Solution

CG works in the feasible region with the initial basic feasible solution (BFS) serving as the
seed for the algorithm. The CG algorithm then generates solutions with non-decreasing
objective function values. Thus, a good initial BFS is essential for the effectiveness of the
CG approach.

We use the MRH and the MNRH to provide the initial BFS. Thus, if X;, X, are the
solutions found using the MRH and the MNRH respectively, and if z(z) is the objective
function for the capacitated problem, then the initial BFS X for the CG is given by {X| X
= X; or Xy, and z(X) = max.(z(X1), 2(X2))}

3.4.2 Column Generation Formulation

The capacity constraint is applied as part of the sub-problem. This is because in Formulation
1, which is the stricter case and reflects constraint on the operational capacity, capacity
requirements need to be satisfied every time period. The sub-problem evaluates the y;x;
variables and also fixes the x;; variables. The Master problem selects the solutions for each
time period that gives the maximum objective function value. The master problem is solved

as a relaxed LP with no binary constraints.

3.4.3 Master Problem

The decomposed master problem for the CG approach is as follows:

T n T T
Maximize Z Z Z Z (1 — p)p ' dp Faysjne + Z Z Z Z CikZsiktfst — Z Z Cwit

t=0 ke® j=1scF; t=014€A ke® scF; t=14€A
subject to

—wi+ >, Fa1zer1— Y Fazer < 0V i=1,...,|At=1,...,T (3.1

scFy_1 seF;
—wi + > Fazgi— Y, Fyoizew—1 < 0V i=1,...|Alt=1,...,T (3.2)
seF; s€F;_1
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S F, = 1 V t=0,...,T (3.3)
Fy € {0,1} V st=0,...,T (3.4)

wy > 0V i=1,... |At=1,...,T (3.5

Variables F; stand for the feasible solutions and replace the z;; and y;; variables which
are constants. Constraint (3.3) ensures that only one solution should be selected for each
time period t. If 3,7v,6 be the dual multipliers generated after solving the relaxed master
problem for constraints (3.1), constraints (3.2) and constraints (3.3) respectively then the

sub-problem uses these dual multipliers to generate feasible solutions.

3.4.4 Sub-Problem

The sub-problem for time periods t =1tot =T — 1 is as follows:
Maximize Z Z(l - p)pjildkyjkt + Z[ﬁit = Bit+1 — Vit + Yit1)Tir + Z Z CikZikt — Ot

ke® j=1 €A i€A kef
subject to

Zyjkt - Z TigtTit < 0 vV k=1, , 0] (3.6)
j=1 icA
dzy < n (3.7)
1EA

Zikt S TiktLit \V/ ’i:1,...,|A|,k:1,...,|®|,t:0,...,T, (38)

Sz <1 V k=1,...,|0,t=0,...,T, (3.9)
i€A
dezikt S Qit A ’izl,...,|A|,t:0,...,T, 310)
kco
zee € 0,1} V i=1,... |ALk=1,...,|0,t=0,...,T.(3.11)

yjkt S 1 \V/ j:]_,,n,k:]_,,|®|

(
(
(
(

zy € {0,1} % i=1,...,|A 3.13)

The sub-problem is itself formulated in such a way that the new column generated has a
favorable reduced cost to enter the basis of the master problem. Due to non-availability of
the dual multipliers 8 and  for ¢t = 0 and ¢t = T, the objective function has a different form

for these time periods.

49



For t = 0:
Z 2(1 — )Py + Z[—ﬁitﬂ + Yitr1)Tie + Z Z CikZikt — 04

ke® j=1 1EA 1€A keh
Fort="1T:

X =P deyire + DB — Yaelmie + D Y Cinzine — O
ke® j=1 i€EA €A kech

The solution to the above sub-problem is a new variable F; which enters the master problem.

3.4.5 Complete Solution Using Column Generation

We solve the RMP and then solve the subproblem for time period t = 0 to ¢ = T' consecu-
tively one after another. The algorithm is as follows [50]:

Step 1:- Find the initial Basic Feasible Solution and include it in the RMP. Set Iteration #
= 0.

Step 2:- Initialize time ¢ = 0 and increment Iteration # by 1.

Step 3:- Solve RMP.

Step 4:- Obtain dual multipliers for time ¢ and pass to the sub-problem.

Step 5:- Solve the sub-problem for time ¢ and calculate the reduced cost of the new variable
(solution) generated.

Step 6:- Increment t =t + 1; if ¢t < T goto Step 4 otherwise goto Step 7.

Step 7:- If the reduced cost of the new solutions generated for all time periodst =0tot =T
is less than zero, goto Step 9; otherwise goto Step 8.

Step 8:- Feed solutions generated for all time periods to RMP and goto Step 2.

Step 9:- Solve the Integer Master Problem and stop.

The cycle of passing the dual multipliers to the subproblem and passing a feasible solution

to the master problem continues until no more improvement in the objective function value

of the relaxed master problem is possible.

After performing several iterations of solving RMP, when the termination criteria is

reached the integer master problem (IMP) is solved. The IMP finds the best feasible solution
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Initialize t=0

Input a feasible solution
Y

Pass generated feasible solutions

Solve Relaxed Master Problem

Y

Pass Duals

Y

Solve Sub—Problem for t=0
to t=T

for all time
<0

is
the reduced (
t=0 No cost of the new Yes
@ variables generated t Solve Integer Master Problem
and stop

Figure 3.4: Solution Flowchart [50]

for each time period for the overall problem. The RMP terminates when the reduced cost
of the generated columns is less than zero. It follows from the fact that a negative reduced
cost will never enter the basis of a RMP with a maximization objective function. In certain
cases, the CG heuristic will keep on iterating with a very small increase in the objective
function of the RMP. In such cases, we can terminate the CG heuristic when the desired
solution quality has been obtained (i.e., the objective function value of the RMP is within a
certain percentage of the linear programming relaxation of the original problem). This will
improve the solution time of the CG approach. Other possible termination criterions can be
a threshold time within which a solution is required or a bound on the number of iterations.

It should be noted that the Column Generation procedure described in this section is
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only a heuristic. It does not even guarantee optimality. It has been explored due to its
ability to handle large sized problems (not possible in standard solvers) and for performing

“reasonably” well for medium and small sized ones.

3.5 Chapter Summary

In this chapter, we modified two greedy heuristics of the Dynamic MEXCLP model to solve
the Capacitated version of the Dynamic MEXCLP model presented in Sections 3.2,3.3. Also
we analyzed the worst case error bounds for each heuristic and showed that both the heuris-
tics can perform arbitrarily bad. Where solution quality is of the essence and computational
time is not important, we extended the Column Generation Scheme to incorporate the ca-
pacity constraint per time period. The next chapter presents the numerical studies carried

out using the heuristics proposed in this chapter.
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Chapter 4

Implementation and Numerical
Studies

Based on the Solution Methodologies proposed in the previous chapter, we present numerical

studies for the Capacitated Dynamic MEXCLP model.

4.1 Input Parameters

The parameters governing the problem structure (also refer [50].
1. n: Maximal number of facilities available for any given time period.

2. Displacement Range: The maximum displacement possible in X and Y direction

per unit time.

3. Displacement: Displacement of the sensors in X and Y directions per unit time. It

is randomly generated between 0 and displacement range.

4. Potential Location Range: Defines the region within which the potential facility
locations are randomly distributed. E.g., if the value of potential location range is
100, = and y coordinates of all the potential facility location are randomly distributed

between 0 and 100. The z coordinate is fixed to 10.

5. Sensor Location Range: Defines the region within which the sensors are located at

time ¢ = 0. The location of a particular sensor at subsequent time slots is calculated
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10.

11.

12.

13.

14.

15.

based on the displacement of that sensor per unit time.

. Data Range: Range of the demand generated by the sensors lies.

|Al: Specifies the number of potential locations available for locating facilities, A being

the set of all potential facility locations.
|©]: The number of sensors, O is the set of all sensors.
U: Coverage radius within which a facility can cover a sensor.

d: Demand of each sensor that needs to be fused per time period (can be assumed to

be in megabytes).

A: The preference assignment constant. Note that it has replaced the c;;’s in the
formulation. It has been assumed that all cluster-head locations are equally preferred

by the sensors.

M: The capacity of the cluster head locations. Again, this replaces @);;’s in the formu-

lation signifying that all cluster head locations have the same capacity.
p: Probability of link failure between the facility and sensors.

C: Relocation cost incurred per unit change in the number of facilities placed at a

location between two successive time periods.

T': The value of T signifies that the time horizon under consideration is 0 to 7". Thus

we have T' + 1 time slots for which the problem is to be optimized.

The software implementation took place on a machine with a Windows Platform and

having the Intel Pentium 4 processor (1400 MHz) with 256 MB RAM. The Greedy and

the Column Generation Heuristics were coded in the C Programming language with the

commercial software CPLEX (Version 7.5) used for solving the Relaxed Master Problem (at

each CG iteration) and the Integer Master Problem at the end. It is also used to solve the

LP relaxation of the Capacitated Dynamic MEXCLP model and the integer formulation
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(wherever possible, for obtaining the optimal solution). The step-by-step description of
algorithm implemented can be found in [50].

The results for some problem instances are discussed below in the next section.

4.2 Numerical Results for Some Problem Instances

The results are tabulated in Tables 4.1 to 4.12 with the results for each problem instance
tabulated in two successive tables (thus 6 instances in all). The first two rows in each table
reflect results for the uncapacitated version of the Dynamic MEXCLP problem and are
presented for the purposes of comparison. For each instance, the problem is solved for six
different capacity restrictions. The preference is kept constant at 2. The column headings

are defined below:

1. integ. LPObj. : The obj. fn. value of the solution to the LP relaxation of the

problem.
2. MAX : The maximum amongst the MRH and the MNRH heuristics.
3. RMPODbj. : The Relaxed Master Problem obj. fn. value.
4. RMP time : The Relaxed Master Problem solution time.

5. # itr : Number of CG iterations. 1 CG iteration consists of solving Master Problem

once and the Sub-Problem once.

6. IMPODbj. : The Integer Master Problem obj. fn. value. This is the final solution
given by the CG.

7. IMP time : The Integer Master Problem solution time.

8. CG time : The total CG solution time. This is the total of the RMP time and the
IMP time.

9. integ. IPObj. : The optimal obj. fn. value provided by CPLEX.
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10. IP time : Solution time for CPLEX.

11. % improv. due to CG : The relative improvement by CG of the obj. fn. value over

the max. value provided by the two heuristics.

12. Duality Gap(%) : The relative gap between the integer optimal solution to the

problem and the optimal solution to the relaxed problem.

13. Optimality Gap(%) : The relative gap between the solution obtained using CG and
the optimal solution given by CPLEX.

It was found, as one might expect, that the addition of the capacity constraint signifi-
cantly increased the complexity of the problem. This is quite evident from the increase in
computational time for similar sized problems in the Dynamic MEXCLP model.

Some observations from numerical analysis are listed below:

1. It was found that adding the capacity constraint increased the complexity of the prob-
lem by a great extent. Eg: For the case with unlimited capacity, CPLEX was able
to solve the problem with 150 potential locations quite easily as compared to the case
with limited capacity (all other parameters and system resources remaining same).
Also, problem sizes considered “small” for the Dynamic MEXCLP case turned out to
be “large” with repect to system resources for the capacitated case. For instance, the
CG heuristic could not even solve a case with p = 0.7 and 70 potential locations due to
lack of system memory available, while it was easily able to do so for the uncapacitated

case.

2. The gap between the LP Relaxation of the Integrated Problem and the Optimal Solu-
tion is much wider in the case with capacity. In some cases, this gap could be as wide

as 30%.

3. The MRH and the MNRH heuristics provided “reasonably good” initial BFS - since

CG could only improve, on an average, < 2% for small sized problems.

56



p | C | integ. | LP time | MRH | MNRH | MAX | RMPObj | RMP time | # itr
LPODbj
03] 3| 1712.6 043 | 1676.1 | 1670.2 | 1676.1 | 1695.95 21.611 33
M| p | C |int. LP | LP time | MRH | MNRH | MAX | RMPODbj | RMP time | # itr
5 103] 3| 11208 | 0821 |1006.5| 1026.2 | 1026.2 | 1039.8 116.187 104
10 |03 |3 | 10958 | 0.781 | 953.1 | 968.1 | 968.1 9715 59.796 57
15 03| 3 | 1160.5 | 0.782 | 979.7 | 1004.99 | 1004.99 | 1038.4 217.052 171
20 | 0.3 3 | 11481 | 0.781 | 9684 | 9821 | 982.1 | 11319 103.789 84
25| 0.3 3 | 11489 | 0.782 | 936.5 | 978.25 | 978.25 | 1130.7 67.988 61
30 03] 3| 1131.9 | 0.781 | 9595 | 966 966 1126.4 106.443 88

Table 4.1: Results (Part a) for Instance 1

4. For varying p : It was found that increaing p made the problem harder to solve. It
increased the solution time for both the CG and CPLEX. Also, an increase in p tended
to increase the Duality Gap. The improvement provided by the CG increased showing
that the heuristics did not perform very well for high p’s. However, the Optimality Gap
also increased showing that CG itself may not perform so well as far as the optimal

solution is concerned.

5. For varying M : No significant trend was observed for most performance values
with respect to the varying M, even though one might observe that most of these
performance indexes peaked around a value of M. Thus the average plot of these with

respect to M might tend to be concave downwards.

4.3 Chapter Summary

In this chapter, the numerical studies done using the heuristics proposed in Chapter 3 were
discussed. It was found that the greedy heuristics provided reasonably good solutions and
the Column Generation heuristic was able to further refine these. It was also found that CG
can solve larger problems where CPLEX fails to perform. The next chapter discusses some

non-steady state generalizations of the problem.
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IMPODbj | IMP time | CGtime | integ. | IP time | % improv. | Duality | Optimality
IPObj due to CG | Gap (%) Gap(%)
1692.9 0.17 21.781 1712.6 0.33 1.002327 0 1.150298
IMPObj | IMP time | CGtime | int. IP | IP time | % improv. | % D Gap | % O Gap
1039.8 0.06 116.247 1039.8 0.671 1.325278 7.7937 0
971.5 0.03 59.826 971.5 0.691 0.351203 12.79 0
1036.3 5.318 222.37 1038.4 0.711 3.115454 11.7582 0.202234
1131.9 0.06 103.849 1131.9 0.771 15.25303 1.43438 0
1126.1 17.054 85.042 1130.7 0.741 15.11372 1.61148 0.406828
1126.4 0.07 106.513 1126.4 0.861 16.60455 0.48595 0
Table 4.2: Results (Part b) for Instance 1
p | C|int. LP | LP time | MRH | MNRH | MAX | RMPObj | RMP time | # itr
051 3 1216.5 0.43 1167.8 1193 1193 1204.34 58.774 64
M| p | C|int. LP | LP time | MRH | MNRH | MAX | RMPObj | RMP time | # itr
5 05| 3 828.3 0.811 716.5 733 733 739.063 117.549 100
10105 | 3 822.6 0.792 680.5 691.5 691.5 691.5 65.334 55
15105 3 | 877.99 0.832 702 722.75 | 722.75 751.552 146.921 100
201 0.5| 3 | 89.79 0.771 682.5 701.5 701.5 845.875 124.99 100
25 105 3| 862.19 0.761 653.5 702.25 | 702.25 845.625 129.446 100
30 05| 3| 84997 0.731 678.5 690 690 843.5 107.745 100
Table 4.3: Results (Part a) for Instance 2
IMPObDBj | IMP time | CGtime | int. IP | IP time | % improv. | % D Gap | % O Gap
1202 0.551 59.325 1216.5 0.35 0.754401 0 1.191944
IMPODbj | IMP time | CGtime | int. IP | IP time | % improv. | % D Gap | % O Gap
735 25.637 143.186 741 0.681 0.272851 11.7818 0.809717
691.5 0.04 65.374 691.5 0.731 0 18.9595 0
722.75 600.283 747.204 756.75 0.722 0 16.0206 4.492897
840.5 7.13 132.12 846.5 0.771 19.81468 1.57043 0.708801
836.25 53.647 183.093 | 846.25 0.711 19.08152 1.88307 1.181684
843.5 0.07 107.815 844.5 0.841 22.24638 0.64816 0.118413

Table 4.4: Results (Part b) for Instance 2
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p | C|int. LP | LP time | MRH | MNRH | MAX | RMPObj | RMP time | # itr
0.7 3 | 444.36 0.14 409.89 | 441.06 | 441.06 441.06 0.26 0
M| p |C|int. LP | LP time | RH NRH MAX | RMPObj | RMP time | # itr
5 107 3| 546.34 0.801 409.89 | 441.06 | 441.06 442.062 181.751 150
10 1 0.7 ] 3 552.5 0.781 394.38 | 419.22 419.22 419.22 135.935 124
15 0.7 | 3 | 597.69 0.791 422.82 | 445.023 | 445.023 495.63 239.003 150
201 0.7 3| 575.93 0.761 384.3 420.9 420.9 562.064 211.784 150
251073 | 9579.38 0.751 367.29 | 424.23 | 424.23 566.18 191.405 150
30 0.7 3 | 569.37 0.741 387.6 414 414 561.936 253.654 150
Table 4.5: Results (Part a) for Instance 3
IMPObj | IMP time | CGtime | int. IP | IP time | % improv. | % D Gap | % O Gap
441.06 0 0.26 444.36 0.14 0 0 0.742641
IMPODbj | IMP time | CGtime | int. IP | IP time | % improv. | % D Gap | % O Gap
441.06 3.795 185.546 | 444.36 0.661 0 22.9507 0.742641
419.22 0.091 136.026 | 419.22 0.661 0 31.7913 0
451.12 8584.4 8823.41 | 502.54 0.691 1.368918 18.9333 10.23302
945 335.773 047.557 964.9 0.761 29.48444 1.95226 3.522747
950.95 458.76 650.165 | 568.23 0.711 29.87059 1.96142 3.041022
936.7 963.35 817.004 963.9 0.852 29.63768 0.97068 4.82355
Table 4.6: Results (Part b) for Instance 3
p | C|int. LP | LP time | MRH | MNRH | MAX | RMPObj | RMP time | # itr
05| 3 677 0.1 658.5 677 677 677 0.21 0
M| p | C|int. LP | LP time | MRH | MNRH | MAX | RMPObj | RMP time | # itr
5 05| 3| 743.84 0.48 658.5 677 677 677 36.513 o7
10 05| 3 | 796.69 0.461 662 682.5 682.5 682.5 13.459 21
15105 | 3 | 801.78 0.441 669.25 669.5 669.5 693.5 107.014 150
20 1 0.5 | 3 | 816.07 0.451 621.5 661 661 805 99.636 79
25 105 | 3| 784.43 0.451 628 635 635 779 46.077 72
30 0.5 | 3 | 847.68 0.44 679 695 695 841 76.089 120

Table 4.7: Results (Part a) for Instance 4
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IMPObDj | IMP time | CGtime | int. IP | IP time | % improv. | % D Gap | % O Gap
677 0.01 0.22 677 0.11 0 0 0
IMPODbj | IMP time | CGtime | int. IP | IP time | % improv. | % D Gap | % O Gap
677 0.04 36.553 677 0.401 0 9.87303 0
682.5 0.02 13.479 682.5 0.401 0 16.7305 0
693.5 0.1 107.114 693.5 0.421 3.584765 15.6133 0
787 73.345 132.981 805 0.441 19.06203 1.37559 2.236025
779 0.05 46.127 779 0.42 22.67717 0.69712 0
841 0.08 76.169 841 0.431 21.00719 0.79479 0
Table 4.8: Results (Part b) for Instance 4
p | C|int. LP | LP time | MRH | MNRH | MAX | RMPObj | RMP time | # itr
03| 3 949.5 0.11 929.1 947.8 947.8 947.8 0.23 0
M| p | C|int. LP | LP time | MRH | MNRH | MAX | RMPObj | RMP time | # itr
5 03] 3 1006.4 0.461 929.1 947.8 947.8 949.5 22.282 35
10103 | 3 | 1061.1 0.471 929.2 955.5 955.5 955.5 12.568 19
15103 | 3 | 1062.9 0.461 931 936.6 936.6 950.3 60.127 93
20 03| 3| 10814 0.45 884.5 925.4 925.4 1069.4 37.083 53
25103 | 3| 1040.4 0.44 879.2 889 889 1034 10.825 16
30103 | 3| 1126.6 0.451 951.8 973 973 1119.9 49.561 72
Table 4.9: Results (Part a) for Instance 5
IMPODbj | IMP time | CGtime | int. IP | IP time | % improv. | % D Gap | % O Gap
947.8 0 0.23 949.5 0.11 0 0 0.179042
IMPObBj | IMP time | CGtime | int. IP | IP time | % improv. | % D Gap | % O Gap
949.5 0.03 22.312 949.5 0.391 0.179363 5.99211 0
955.5 0.02 12.588 955.5 0.401 0 11.0565 0
950.3 0.06 60.187 950.3 0.42 1.462738 11.8529 0
1045.4 37.865 74.948 1069.4 0.45 12.96737 1.11965 2.244249
1034 0.02 10.845 1034 0.451 16.31046 0.62191 0
1119.9 0.05 49.611 1119.9 0.451 15.09764 0.59686 0

Table 4.10: Results (Part b) for Instance 5
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p | C|int. LP | LP time | MRH | MNRH | MAX | RMPObj | RMP time | # itr
0713 406.2 0.1 385.92 406.2 406.2 406.2 0.23 0
M| p | C|int. LP | LP time | MRH | MNRH | MAX | RMPObj | RMP time | # itr
5 1071 3 490.35 0.48 385.92 406.2 406.2 406.2 45.245 72
10 | 0.7 | 3 535.05 0.49 398.25 409.5 409.5 409.74 37.814 60
1510.7| 3 541.21 0.451 399.87 | 403.74 | 403.74 448.39 162.353 150
201 0.7 3 551.95 0.45 357.66 | 402.36 | 402.36 546.36 122.195 150
251071 3 529.79 0.43 357.69 381 381 525 79.004 122
30 10.71] 3 570.06 0.441 400.44 | 419.16 | 419.16 565.16 96.338 133
Table 4.11: Results (Part a) for Instance 6
IMPObj | IMP time | CGtime | int. IP | IP time | % improv. | % D Gap | % O Gap
406.2 0 0.23 406.2 0.11 0 0 0
IMPObj | IMP time | CGtime | int. IP | IP time | % improv. | % D Gap | % O Gap
406.2 0.04 45.285 406.2 0.39 0 20.7159 0
409.74 0.04 37.854 409.74 0.401 0.058608 30.5821 0
446.2 19.018 181.371 451.7 0.43 10.51667 19.8171 1.217622
546.36 0.101 122.296 546.36 0.44 35.78885 1.02313 0
525 0.08 79.084 525 0.411 37.79528 0.91228 0
565.16 0.09 96.428 565.16 0.431 34.83157 0.86646 0

Table 4.12: Results (Part b) for Instance 6
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Chapter 5

Some Non Steady-State
Generalizations

Consider a non-steady state analysis of the problem, i.e., in which the link failure prob-
abilities are not fixed but follow a distribution. Below, we discuss the formulation of the
problem and demonstrate that it reduces to the one discussed previously in Chapter 2.

Consider a bipartite graph Gp (not necessarily complete) with vertex set V and edge set
E. Let Vi, V4 such that ViUV, =V and V; NV, = ¢, be the two layers. Also, consider
that each edge, e;; € E (i € Vj and j € V3), has the properties of failure and recovery
(but each having different parameters and behaving independently of the others). The link
failure (and possible recovery) here model the failure in connectivity between sensors and
cluster heads due to uncertain causes such as terrain effects and instrument malfunction.
The vertices (corresponding to sensors or cluster heads) are assumed not to fail.

Reliability of vertices (i € V;) in layer 1 can be considered with respect to connectivity
with vertices in layer two (j € Va). The “connection” (or coverage) for vertex i is said to
be reliable at time ¢ if there exists at least one edge with vertex ¢ that is working at time
t. Thus, if rj(¢) is the probability that the edge e;; is working at time ¢, then the reliability

for vertex i (i.e., the probability that vertex i is covered) over a time horizon T is



The rj;(t) can be found for each edge at time ¢ using Continuous Time Markov Chain
models as discussed subsequently in Section 4.3. The general expression for the above integral
tends to blow up even for relatively simple instances, such as, when the maximum degree

for every ¢ € Vj is 2 or 3. The weighed reliability of the network can now be found as

R = Z wiRi (52)

ieW

where w; is the weight (“importance”) attached with sensor 7. If as further simplification, it
is assumed that all the links are identical, then this analysis might be applied (initially) for
optimal placement of cluster-heads with respect to maximum sensor coverage over a time-
horizon. So 7;;(t) is now simply r(¢). Also, let f(t) = 1 — r(t), the probability that the
link is not working at time ¢. Thus, the problem of optimally locating cluster heads under
non-steady state conditions can be written as

Objective — Mazimize the weighed total reliability of the network.

Using (1), and remembering f(t) = 1 — r(t), we have

Max. Sien wils = Sievy wi (5 Jy (1= (F(£)=57") dt)
S.T. 2Tt < n 0<t<T

where zj; is a 0 — 1 variable taking a value of 1 if there is a cluster-head at possible cluster-
head location j at time instant ¢, and O otherwise. 7;; is a 0 — 1 constant which is 1 if
cluster-head location j covers sensor ¢ at time ¢ and 0 otherwise.

Cluster-heads are assumed to change positions at discrete time intervals (sensors are mo-
bile but their positions at any time instant is known). To account for this, the time horizon is
broken down into 7' time periods, during each period, the cluster-heads remain “stationary”.
The movement of cluster-heads from one location to another during successive time periods
is assumed to be instantaneous. Changes take place at whole numbered time-points (indexed

as k), starting at ¢ = 0. Thus, the new (equivalent) objective along with the constraint is
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given by

& Max. Y ey, W (% SE (1 - (f(t))zj wj(k—l)rij(k—l)) dt)
S.T. 2iTik <N \

This objective can be linearized as follows

& Max. ey, w; (5500 5 (S5 (1 = £O) ((FOP o)) dt)
S.T. >t Ypilk—1) — 225 Li(k—1)Tij(k—-1) < 0 Vi, k
& Ej Tk S n Vk

where y,;x-1) is @ 0 — 1 variable taking a value of 1 if sensor 7 is covered by atleast p
cluster-heads during time period starting at time-point £ — 1 and 0 otherwise. m is the total

number of cluster-heads. Interchanging the order of integration and summation, we have

& Max. ey, wi (3 iy Sy (11— F)(F0)P'dt) Ypice-1) )
S.T. D1 Ypi(k—1) — 225 Tj(k—1)Tij(k—1) < 0 Vi, k
& YTk <n Yk

the integral ( S (= f)(f (t))p_ldt> might be pre-computed and essentially reduces
to a constant for given limits of integration and given p. Thus, the problem of optimally
locating cluster-heads under non-steady state conditions for maximum coverage (reliability
of connection) of mobile sensors essentially reduces to the steady state version and can be

formulated as a Mized Integer Linear Program (MILP).

5.1 Jamming

We add the feature of jamming and consider it under various possible scenarios. Jamming of

a link or a node (sensor or cluster head) might be due to adversarial action and is considered
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Vertex Set V 2

Unoccupied Cluster—Head Location
Occupied Cluster—Head Location

Sensor Node

| @ @ O

Displacement Vector (Direction of
Movement of Sensor)

Jamming Circle in the Plane of the Sensors

Figure 5.1: An Example of jamming of sensors.

under some different cases as follows. In all the cases, however, jamming is assumed to
behave in such a fashion that a jammed link or node is no longer capable of functioning once
it is jammed (something like a 0 or 1 behaviour).

Case 1

1. A set of possible enemy scenarios is assumed, each scenario with some steady state
probability (cs, s for the scenario) of occurrence. A scenario is characterized by (pos-

sible) enemy jamming device locations and their range.
2. The probability of the scenarios do not change in different time periods (time indices).

3. “Jamming” of a sensor takes place if the sensor is within a known radius (jamming
radius) of an enemy jamming device (center of hemisphere), as shown in Fig. 2. Thus,
since the sensor locations are known for every time period, jamming of a sensor (under

a given scenario) can be represented by a 0 — 1 constant.

4. Links and cluster-heads are not jammed, rather sensors are jammed. So, a jammed

sensor cannot communicate with any of the cluster-heads.
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Formulation for Case 1: Objective — Mazimize the weighed total reliability of the net-

work.
& Max. Tiey, wi Xy ¢ Ris = Tiev wi D¢ { & Jo (1= (F()) 20775 dt}
S.T. YizTip<n 0<t<T

(Where R;; is the sensor connection reliability under scenario s and 75 is the 0 — 1 constant

which is 1 if cluster-head location j covers sensor ¢ under scenario s at time ¢ and 0 otherwise.)

& Max. £ ey, wi S0 {ST0 & (1= (F(1)) 2556060 4t}
S.T. 2iTik SN vk

Note that rjjex-1) = 0 V7, when sensor ¢ is jammed under scenario s. This is be-
cause given a scenario, and since the position of sensors is known, we know whether the
sensor is jammed under the scenario or not. And since a jammed sensor is jammed for all

possible cluster-head location, hence the condition. Thus, linearizing this as before,

& Max. % Dicv; Wi s Cs {Ele fk]:cfl ( ;nzl(l — f(t) ((f(t))p_lypis(’“*l)» dt}
S.T. D1 Ypis(k—1) — 25 Tj(k—1)Tijs(k—1) < 0 Vi, k, s
& 2Tk S Vk

where ,i5k—1) is again a 0 — 1 variable which takes a value 1 if sensor ¢ is covered by
atleast p cluster-heads under scenario s at time index k — 1. Thus, Y1) is a “virtual”

variable without any real significance.

& Max. § Yiers wi By o { Dhoy Ty (1 (1= FO)(F)P 1dt) a1 }
S.T. Dot Ypis(k—1) — 25 Tik—1)Tijs(k—1) < 0 Vi, k, s
& YiTik <n Vk

the integral ( S = feNf (t))p’ldt> can again be pre-computed and so the formula-

tion is again an MILP as for the steady state location of cluster heads (henceforth referred
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to as the Dynamic Maximum Expected Coverage Problem, or MEXCLP).

Case 2

1. Things are the same except that the enemy scenarios can change in different time-

periods.
2. So the scenario probabilities (the ¢’s) now have two subscripts.

Formulation for Case 2: Objective — Mazimize the weighed total reliability of the net-

work.
& Max. Y;cy, wi {% fOT > Cat (1 — (f(t))zj 93””]'“) dt}
S.T. 2iTig <n 0<t<T

& Max. £ iy w; {Zle > Ca(h-1) St (1 _ (f(t))zj mj(k—l)m-js(k—l)) dt}

(Note that Tijs(k—1) = 0 V4, when sensor 7 is jammed under scenario s.)

& Max. 7 Yiey, Wi {Zle S Coh-1) S (Z;n:1(1 — f(?)) ((f(t))pilypis(kflo) dt}
S.T. 2ot Ypis(k—1) — 205 Ti(k—1)Tijs(k—1) < 0 Vi, k, s
& Zj .’L‘jk S n Vk

& Max. % Yier; wi {Thoy By coemn) Spey (S (1= FO)(F(1)P1dt) Ypisiior) |
S.T. o1 Ypis(k—1) — 225 Tjh—1)Tijs(k—1) < 0 Vi, k, s

& YiTik <n Vk

the integral ( S (= F)(f (t))p_ldt) can again be pre-computed.
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Vertex Set V 2

O O (O Unoccupied Cluster—Head Location
@ O
() () © Occupied Cluster—Head Location
O ®©  Sensor Node

Displacement Vector (Direction of
Movement of Sensor)

Coverage Cones__.-

Example of link in which both the sensor and cluster—head are not
jammed but the link is.

Figure 5.2: An Example of jamming of links.

Case 3

1. If we assume that links are jammed instead of the sensors being jammed, the change
is not much. 75,1y = 0 only for specific (pre-determined) i, j pairs, instead for

all j as we had earlier (note that ¢, j denote sensor and possible cluster head location.

2. Note that this case somewhat takes care of the situation when cluster-heads might also

be jammed.

3. If enemy scenarios can change in different periods, the formulation for this case remains
the same as the one for the previous case, with only the difference mentioned above in

1.
(Final) Formulation for Case 3:
Max. & Yiers wi { Zhey Ss Cae 1) Xy (JE1(1 = F@©)(F(£))P~"dt) Ypiax- 1) }

S.T. D1 Ypis(k—1) — 25 Tj(k—1)Tijs(k—1) < 0 Vi, k, s
& 2 Tik S Vk

Tijs(k—1) = 0 if edge e;; intersects the hemisphere determined by an enemy jamming loca-

tion as center and jamming distance as radius (thus Tijs(k—1) 18 known) under scenario s and
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time-period k£ — 1.

Case 4

e If the location of the enemy jamming centers/devices and the jamming radius is known,
then the case is simpler for we just need to drop the s—subscript (since there are no

more scenarios) and make the specific (pre-determined) 7;x—1) terms zero.

Formulation for Case 4:
& Max. Sy, will = Siey wi (5 Jy (1= (F(5) %77 dt)
S.T. YiTie<n 0<t<T

& Max. Sy wi (#5055 (S (1= FO)(F0)P1de) gige))

S.T. >t Ypilk—1) — 225 Ti(k—1)Tij(k—-1) < 0 Vi, k
& Ej xjk S n Vk
Tijk—1) = 0 if edge e;; intersects the hemisphere determined by an enemy jamming lo-

cation as center and jamming distance as radius (thus r;(;—1) is known) at time-period (k—1).

Case 5

e [f the jamming centers are distributed in a way that is completely unknown to us, we
can assume that (corresponding to Case 1) each sensor has a finite known probability

of being jammed.

e Even in this case the formulation does not change much since the reliability of connec-
tion of the sensor ¢ is now found using a conditioning argument as
R; = {% I (1 — (f(t))zj m”””) (1— a)dt} + 0 x a, where a is the probability that the

sensor ¢ is jammed.
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Formulation for Case 5:
Max. Sievs wi (7 ke Ty (Koa(l = FO) )P dt) ey ) (1 - a)
S.T. >t Ypi(k—1) — 225 Tik—1)Tijk—1) < 0 Vi, k
& Zj Tk S n Vk

Determination of possible value(s) of a is an aspect that might have to be looked into in
this case (since this would require estimation or probabilistic knowledge of enemy jamming

device locations).

5.2 Charaterization of Sensor and Cluster Head Be-
haviour

Till now, we found that non-steady state analysis and the inclusion of jamming in the model
(under certain conditions) does not essentially complicate the model and that if certain
computations are done offline, they reduce to the Dynamic MEXCLP model. However, we
have been completely oblivious to the information transmission and fusion in the network.
We now further generalise the model by incorporating these aspects. In order to achieve
this, we need to make certain assumptions regarding the sensor and cluster head behaviour
and about information processing in general. These charaterizations are considered in the
following different cases

Case 1

1. Information : The total (quantity of) information obtained is to be maximized. The
usefulness of information is not based on its entirety, i.e., even parts of information

might be useful.)

2. Transmission of Information : Assumed to be any known general function of time
(can be, for instance, alternate states of transmission and no transmission, each state

lasting for an amount of time distributed exponentially with some mean).
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3. Processing of Information : Instantaneous (corresponding to just the receipt of infor-

mation. The actual processing might be done separately.)

4. Capacity of cluster heads : Assumed to be satisfied over discrete time intervals and not

instantaneously.

Objective — Mazximize the total information obtained.
Max. Yiey; Jo dit) (1 - ( F(t) 2 st d
S.T. >zt <0 0<t<T
& > i fo di(t)dt < ¢ 0<t<T

& Max. > ey, Zgzl fkkfl d;(t) (1 — (f(t))z:; “”J‘(k—l)”n(k—u) dt
S.T. 2Tk <0 Vk

& 22 Ti(k—1)Tij(k—1) f;f—1) di(t)dt < cr—1y Vk

& Max. Tiey; Ty S (Tims di)(1 = £@) (£ tpice 1) )

S.T. D1 Ypi(k—1) — 225 Tj(k—1)Tij(k—1) < 0 Vi, k
& 2 Tik—1)Tij(k—1) fk]:cfl) di(t)dt < cre—1y Vk

< Max. 3 ;e Z;‘Czl Z;Jn:l (fkl:c—l d;(t)(1 — f(t))(f(t))p_ldt) Ypi(k—1)

S.T. >t Ypi(k—1) — 225 Tik—1)Tij(k—1) < 0 Vi, k
& Zj Tk S 0 Vk
& Ez xj(k—l)lr'ij(k—l) flf—l) dz(t)dt S C(k:—l) Vk

the integral ( [ di(t)@ = F@O)(f (t))p_ldt) might be pre-computed (if required, numeri-
cally) for known functions d;(t) and essentially reduces to a constant for given limits of

integration and given p.

Case 2
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1. Information : The total (quantity of) information obtained is to be maximized. The
usefulness of information is not based on its entirety, i.e., even parts of information

might be useful.)

2. Transmission of Information : Assumed to be any known general function of time
(can be, for instance, alternate states of transmission and no transmission, each state

lasting for an amount of time distributed exponentially with some mean).

3. Processing of Information : Assumed to take some time. Can have a general distribu-

tion.

4. Capacity of cluster heads : Assumed to be satisfied over discrete time intervals and not

instantaneously.

Case 3

1. Information : Information is assumed to be in multiples of a basic unit. Information is
useful only if obtained in its entirety. Thus if £ units of information is being transmitted

then the information is useful only if all £ units are obtained.)
2. Transmission of Information : Poisson (batch) arrival process.

3. Processing of Information : Assumed to take some time. Can have a general distribu-

tion.
4. Capacity of cluster heads : Assumed to be satisfied instantaneously.

Such a system can be modelled using the (transient case) of the MX!/G/1/k queueing
system. We can minimize the loss for the system subject to capacity constraints. It should
be noted here that link failures and jamming are not considered.

The last two cases will involve queueing type formulations and will have to be looked

into.
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5.3 Determination of r;;(t)

We discuss the evaluation of r;;(¢) here. Note again that this is not the same as the constant
Tij, signifying coverage in the MILP formulation.

Consider a single link that is susceptible to failure, with the mean time for which the
link is working being distributed exponentially. The link can recover from the failure in
time which might be a constant or also follows an exponential distribution. Let r(t) be the
instantaneous reliability of the link (mathamatically, the probability that the link is working
at time instant ¢). The reliability of the link (over a finite time horizon T') is then defined
to be

R = % /0 @)t (5.3)

When the time for which the link is not working also has an exponential distribution, the
analysis is quite straight-forward using a Continuous Time Markov Chain Model and this is
discussed first.

Symbols used,

e )\ = rate at which failures arrive. Thus, time between the instants when the link starts

working and the next failure arrives is distributed exponentially with parameter .

e A = time for which the link is not functioning (time for recovery). Thus, time between

the instants when the link stops working and starts working again.
e T = time horizon under consideration.

5.3.1 When A ~ exp(p)

The system can now be modelled as a Continuous Time Markov Chain(CTMC), with the

state space consisting of 2 discrete states:

e State 0: Link is functioning
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Figure 5.3: The transition diagram for the case when the link can be in 2 states with times
distributed exponentially

e State 1: Link is not functioning due to “temporary” failure

The link remains in states 0 or 1 for times that are distributed exponentially with pa-

rameters A and p respectively [Figure 1.1].

If

o P(t) : [P;(?)].

e P,;(t) : State transition probabilities at time t.

I : the identity matrix.

Q : the infinitesimal generator matrix of the CTMC.

e S(t) : [S;(t)], a row vector.

Si(t) « P{X(t) = j}-
e X(t) : random variable representing the state at time t.

Now, S(t) = S(0) - P(¢). Thus, to find the probability that the system is in some state,
we just need to find P(t).

The infinitesimal generator for this case is given by

Q- [ A ] (5.4)



The matrix Laplace Transform is

-1
_ +A = 1 s+p A
Pe(s)=[sT—Q] '=|° - 5.5
Partial fraction expansion gives
1 £ 2 1 D S W
Pe(S) — _l Adp Atp ]+ [ Atp At+p ] (5.6)
A T
Inverting the transform, we find the answer in a closed form
S A A
PO = | 3 T |weome] g T3 57
Ap Atp Ap Atp
Therefore, if S(0) =[p (1 — p)], the state at time ¢ can be found as
B A . S
S0 =lp (-p]| W W [+t a3 69
Mu dp T Mu M
But, r(t) = probability that link is working at time ¢t = P{X(¢) = 0}. Thus,
VY S S T P
t) = p(~— + L)+ (1-p) (- — " 5.9
) = o e O ety )
which gives
1 T 7 (1 — e_()‘+H)T)
R=_ / t)dt = A - 5.10

Thus, as T — oo, R — ﬁ and as T — 0, R — p. An illustrative plot of R

against p and T is shown at the end of Section 1.4.
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%) 1)

Figure 5.4: The transition diagram for the case when the link can be in 3 states

5.3.2 Consideration of catastrophic failure

e State 0: Link is functioning
e State 1: Link is not functioning due to “temporary” failure
e State 2: Link is not functioning due to “catastrophic or permanent” failure

Now, at every transition from state 0, the link can go to states 1 or 2 with known proba-
bilities ¢; and c,. From state 1, again, it could go to either states 0 or 2 (with corresponding
known probabilities dy and ds), and the link remains in state 2 once it reaches this state
(corresponding to catastrophic failure) [Figure 1.2]. This system might be modelled as a
3-state CTMC with state 2 being the “absorbing” state. The link remains (analogous to
the previous case) in states 0, 1 and 2 for times which are distributed exponentially with

parameters A\, p and 0 respectively. The infinitesimal generator for this system is given by

-2 A A
Q= | o —p M (5.11)
0 0 O
where \; = ¢;A (1 = 1,2) and p; = djp (j = 0,2). Proceeding in a similar manner as in

the previous section,
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S+ A —)\1 —)\2

P(s)=[sI-Q] "' = | —po s+p -p (5.12)
0 0 S
which gives,
1 S(S + M) S\ SAo + pAg + Ao
Pe(s) = Sit s(s+ A Aafbo + Stto + Ap
( ) 8(32+()\+,u)3+)\,u_)\1,u0) 00 ( 0 ) 82+(§\-(|)-,u)8-|2->\,u—2)\1u0
(5.13)

Partial fraction expansion gives

0 0 A2p+Aipo
1 Ap—A1p0
PE(S) = ~10 0 Aapo+Ap2
S Ap—A1po
0 0 1
2
S+ A  (QopAArpe)s+pt Ao+ A1 Ao po+ AN pa A 2
1 Ap—A1p0
+ Lo s+ — (A2po+Ape)s+Ahapo+pAopo+AZ pa+A1 pop2
(s? + (A + p)s + Ap — Arpo) 0 0 An—A1po

(5.14)

Since we are interested only in state 0, we need only invert the 15 column in the two

matrices. Thus,

Ao p+A1 p2
Ap—A1p0 |-

0
0 Zepotiu r (A1| [Ay] |As] (5.15)
0

P(t) =

Ap—A1p0

o O O

where the Als are 3 x 1 column vectors. We are interested in Ay, and it is given by

FZIF f 5.6

as
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the als being,

(72t OHst)) (X — i+ (u— D)X + (1 + eF)K)

Lt tpt+K) (_ tK
e 2 1+e)u
az = E( ) o (5.18)

where K = (A — p)2 + 4\ 110)2). Now, starting in state 2 would be meaningless since
it would imply that the link is not functioning throughout the horizon. Thus, consider the
starting state probability to be given by S(0) = [p (1 — p) 0], the reliability is then found

as

R LT
REI0
((1 — p)o ( K (26_%T()\+N+K)((A+H)(€TK—1)+K(1+€TK))) > >

An—A1p0 4(Ap—A1p0)
or R = TK
i (47 ETOPO (O 200 (1-¢TF ) K (1+675)) )
P | Xu=xino + 4(Ap—A1p0)
5.20
+ 2TK ( )

Thus, as T — 0o, R — 0 (since it would get “absorbed” in state 2).
When the time of failure has some other distribution, the analysis is not slightly more
cumbersome. For instance, we discuss below the case when the link failure time is known

(deterministic).
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Untitled—6

R=1/2+ (1-Exp[-T]) (p-0.5) /T

L 7
i&.l....{'

=7

For the case when there are only two states. A= =0.5
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Untitled—7

1
R = T (0.49999999999999994 " (19.487179487179468" -

5.128205128205123' e 1-%5'T (-0.10000000000000009 +3.9 e T)) (1-p)) +
7 (0.2631578947368421" (38.974358974358935" - 10.256410256410247"
e 19T (0.09499999999999997'+3.705 e’ T)) p)

A =1
A3 = 0.95
Az = 0.05
Mo = 0.95
u =1
M2 = 0.05
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5.3.3 When A K %, A < T and A is a constant

Based on the above assumptions which define this case, the process can be approximated as
a Poisson process (since the probability of arrival of failure when the link is not functioning,
which is of no consequence here but is essential in a Poisson process, is very small). Thus,

the probability of k failures during the time horizon = (AT%) So, the reliability is given

R - %[é(%)@ RA) = [T - A i - AT) B (521)
R can thus be simplified to
— 1 —AT — ()‘T)k_l _ 1 _ ~ —AA
R= ?[T — AXTe kzzo( (o 1) )] = T[T —AXT]=[1-)A]l=e (5.22)

5.3.4 When A is comparable with % and A is a constant

Let X}, be the time for which the link is working between the (k — 1)"* and the k" failures.
Thus Xy, is distributed exponentially with parameter A. Also, let N (a random variable) be
the number of failures (completely contained) within the time horizon.

Now, since Xj, ~ exp(\) = ¥ | X; ~ gamma(k, \). Thus, for constant a;,

da1 (523)

} _deMIRAma) (N (T — kA — any))*
- k!

k
P{in:T—kA—al

=1

Strictly speaking, it should have been P {T — kA —aqy — d% < Zle X, <T—kA—o1+ d%}

Consider initially that at times ¢ = 0 and ¢ = 7', the link is functioning. Then the

probability that there were k failures in time T is given by
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P{N =k} = TO_kA (P {ix T kA a1}> (P{Xpu1 > a1})den (5.24)

Using the above equations (and recalling that Xy ~ exp(\)), we have

0 )\e_A(T—kA—al)()\(T — kA — al))k

P{N=k}= —leg 5.25
{ } T—kA k! ¢ “ ( )
The reliability of the link is thus given by,
1 1%
R = 7 Y [P{N = k}][T — kA] (5.26)
k=0

Thus,

1

L&)
— T —A\T
0 e + k; (

R =

/0 e MT—kA=a)(\(T — kA — a;)F (5.27)

T—kA k!

e_)‘aldcn) (T — kA)

To deal with the initial assumptions,

e If A < T, then the initial assumptions would have little effect on the accuracy of the

solution, and we could work with this approximation (as with | X | & co).

e Let R = Rel(T). Then, if § was the time for which the link was functioning before

t = 0, the reliability is given by

R = /0 ® £ (O)Rel(T — (A — 6))dd (5.28)

where, f5(§)=probability density function of 4.
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e Consider the case when the link is not working at time ¢ = T". The probability that we

had (k — 1) failures during the time horizon is given by,

k —AT—-(k—1)A—a3) T — — 1A — k—1

(5.29)

Thus the modified Rel(T') is given by

T
\a] Ae™MI=kA=e) (\(T' — kA — ay)*
Relp)(T) = e+ Z ( /T N ( k,( ) e_’\"‘ldoq) (T — kA)

N \

/0 )\e—)\(T—(k—l)A—az)()\(T _ (k _ 1)A _ a2)k—1
(k — 1)

A

(T —_ (k —_ 1)A —_ Otz)d&g)]

(5.30)

Thus the general expression for reliability (R(g)) of a single link when A is a constant

is given by

R = /0 % £5(6)Relym (T — (A — 6))d6 (5.31)

As is evident, the theoretical evaluation of r;;(t) in all except the most trivial of cases, is

quite impractical and one would need to resort to numerical approaches to evaluate it.

5.4 Chapter Summary

This chapter discussed some non-steady state generalizations of the Dynamic MEXCLP
model. It was found that under suitable assumptions, the formulations for this case can be

reduced to the steady state MILP formulations discussed earlier. Several cases involving the
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issue of Jamming were investigated. It was again shown that most of these cases can be re-
duced to the MILP formulations of the Dynamic MEXCLP model. Theoretical computation
of the link failure probabilities were discussed and it was shown that these were not very

practical to compute theoretically except for the most trivial of cases.
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Chapter 6

Conclusions and Possible Future Work

Conclusions

The Capacitated Dynamic MEXCLP model was proposed and investigated. The model tried
to capture the capacity constraint over a time horizon for the distributed sensing networks
in which sensors and cluster heads can be mobile. An MILP formulation was proposed and
solution procedures to solve the formulation were suggested. The work is a generalization of
the Dynamic MEXCLP model proposed earlier. It can be also viewed as a new clustering
approach for the capacitated ad hoc networks. The non-steady state generalizations proposed
laid the ground work for further development in terms of generalizations to capture more
realistic scenarios in which (link) failures need not obey steady state conditions. The specific

conclusions that could be drawn are listed below.

e The addition of the capacity constraint was found to increase the complexity of the
problem significantly. This is quite evident from the increase of solution times with

respect to similar problems in the Dynamic MEXCLP model.

e The greedy heuristics proposed were found to provide reasonably good solutions quickly.
These solutions could then be used as initial BFS for further refinement using Column

Generation technique.

e The solution procedure involving CG could be used to solve large sized problems,

representative of the real world. These problems (in fact problems which were medium-

sized for the Dynamic MEXCLP model) could not be solved using CPLEX.
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e However, CG was not found to be efficient with respect to computational time, in
particular for small scale problems. Thus, for very small problems (which have corre-

spondingly limited applicability) CPLEX might be preferred.

e It was proved that under some assumptions, the model for the case when link fail-
ure probabilities are not constant can be reduced to the MILP formulations for the
steady state case. Thus, real-time implementation is possible if link reliabilities are

precomputed.

e Various scenarios were investigated under which Jamming could occur and it was shown

that most of them could be reduced to the basic dynamic expected coverage models.

Possible Future Work

In light of the conclusions above, some immediate future work that might be possible in

this topic are discussed below:

e The Non-steady state analysis might be investigated further and link failure probabil-

ities might be simulated to achieve a better, more reliable network design.

o Variable relocation costs might be considered to capture more realistic cluster head

movements.

e Fnergy and power are important considerations that have been overlooked in this work.

Models might be developed that incorporate these aspects.

o Queueing models with respect to capacity might be investigated to identify transmission

problems, buffer capacities and information loss in the system.

e Time Delays and Synchronization of clocks in the system might be investigated.
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